
Context and Activity Recognition for
Personalized Mobile Recommendations

Toon De Pessemier, Simon Dooms, Kris Vanhecke,
Bart Matté, Ewout Meyns, and Luc Martens

iMinds - WiCa - Ghent University, Dept. of Information Technology,
Gaston Crommenlaan 8 box 201, B-9050 Ghent, Belgium

{toon.depessemier,simon.dooms,kris.vanhecke,luc.martens}@intec.ugent.be

Abstract. Through the use of mobile devices, contextual information
about users can be derived to use as an additional information source for
traditional recommendation algorithms. This paper presents a framework
for detecting the context and activity of users by analyzing sensor data of
a mobile device. The recognized activity and context serves as input for
a recommender system, which is built on top of the framework. Through
context-aware recommendations, users receive a personalized content of-
fer, consisting of relevant information such as points-of-interest, train
schedules, and touristic info. An evaluation of the recommender system
and the underlying context-recognition framework demonstrates the im-
pact of the response times of external information providers. The data
traffic on the mobile device required for the recommendations shows to
be limited. A user evaluation confirms the usability and attractiveness
of the recommender. The recommendations are experienced as effective
and useful for discovering new venues and relevant information.

Keywords: Context, Activity Recognition, Mobile, Recommendation,
Personalization

1 Introduction

Contextual information is used in many application domains to offer users a
service that is adapted to their location, needs, and expectations. Also in rec-
ommender systems, the user context has gained an increased interest from re-
searchers [1]. For instance, various tourist guide applications use the location of
the user to personalize and adapt their content offer to the current user needs.
An interesting example is a mobile recommender system proving personal rec-
ommendations for Points Of Interest (POI) based on the user ratings [12]. User
ratings can be weighted higher to differentiate between users that rate POI using
the mobile tourist guide application in direct proximity of the POI and others
using the Internet away from the POI. Still via mobile devices such as smart-
phones, more contextual information can be retrieved than currently exploited
by traditional recommendation algorithms. Users are carrying their mobile de-
vice on them, resulting in additional information such as their location, speed,

2 Toon De Pessemier et al.

environment, etc. This additional information can revolutionize the role of rec-
ommender systems from topic oriented information seeking and decision making
tools to information discovery and entertaining companions [16].

Various attempts have been made to recognize user activity from accelerom-
eter data. Wearable sensors have been used to measure acceleration and angular
velocity data in order to recognize and classify sitting, standing, and walking be-
havior [14]. An experiment with five biaxial accelerometers worn simultaneously
on different parts of the body, showed that it is possible to recognize a variety of
different activities like walking, sitting, standing, but also watching TV, running,
bicycling, eating, reading etc. [2]. Moreover, the recognition performance drops
only slightly if data of only two biaxial accelerometers are available - thigh and
wrist. Also through a single triaxial accelerometer worn near the pelvic region,
user activities can be recognized with fairly high accuracy. Nevertheless, exper-
iments showed that activities that are limited to the movement of just hands or
mouth (e.g., brushing teeth) are comparatively harder to recognize using a single
accelerometer [15]. Although most mobile devices contain only a single triaxial
accelerometer, these results indicate the ability to detect user activities through
this built-in accelerometer.

In this research, we present a framework for recognizing the user’s context
and activity based on sensor data originating from the user’s mobile phone in a
daily user environment. The developed framework (Section 2) first detects basic
contexts and activities such as walking and cycling by analyzing the acceleration
of the mobile device. By analyzing these basic activities over a longer period of
time, recognizing more complex contexts, such as “walking to a station while it
is rainy”, is possible. This contextual information is used by the recommender
system (Section 3) in order to achieve the main goal of this research: providing
personalized information and suggestions that are adapted to the current context
and activity of the user. The response time of the information providers as well
as the data traffic required for the recommendations are evaluated. The accuracy
and usefulness of the recommendations is assessed via a user study (Section 4).

2 Context and Activity-Recognition

Because of its rapid growth in popularity and widespread use, we opted for
Google Android as implementation platform of our framework. Nowadays, al-
most every Google Android device has several built-in sensors, such as an ac-
celerometer and GPS. But sensor data are also available in many other operating
systems for mobile devices. The context-recognition framework consists of three
successive phases: 1. Monitoring the (sensor) data, i.e., logging the raw data
from the accelerometer, GPS, battery, proximity sensor, cell-ID, etc. 2. Process-
ing the sensor data and recognizing basic activities. 3. Analyzing the successive
basic activities and recognizing the overall context.

Context and Activity Recognition for Personalized Mobile Recommendations 3

2.1 Monitoring

This phase involves the gathering of all available raw data from the device. GPS
data provides location updates. If no GPS data are available (e.g., in indoor
environments), the cell-ID can give an indication of the location through the ID
of the cellular tower that is currently providing reception to the device. Further,
the battery status (e.g., charging) of the device as well as the battery level can
be retrieved. The accelerometer of most Android devices is capable of capturing
the device’s acceleration on three axes every 20 ms. This accelerometer data are
used to recognize the activity of the user. The proximity sensor is used by the
Android operating system to detect if an object is in the vicinity of the device.
Its main purpose is to detect if the user is holding the device next to the ear
for making a phone call. In that case, the screen can be switched off to save
power. In this research, the proximity sensor is used to detect where the user
carries the device. If the proximity sensor detects no object in the vicinity of the
device, then the device is not in the pocket of the user, and recognizing basic
activities based on accelerometer data is not reliable. The framework can easily
be extended with additional sensor data in order to add additional contextual
information.

2.2 Processing

In this phase, each type of data obtained in the monitoring phase, is converted
into basic contextual information by a processing unit. For some sensor data,
such as data from the proximity sensor, this conversion is straightforward. Other
sensor data, such as data from the accelerometer, require a more intelligent
processing to obtain contextual information. If additional sensor data become
available, the framework can be extended with a new processing unit to extract
valuable information from it.

Points-of-Interest. Matching the current location of the user to the location
of POI enables the framework to identify the nearest POI or the POI within a
specified range. The location of the user is retrieved via GPS data or (if GPS is
not available, or switched off) estimated by the current cell-ID. Different services
are used to retrieve data about the POI in the current neighborhood of the
user. E.g., the location of the Belgian railway stations is retrieved via the iRail
API [17], a service that provides information about railway stations, schedules,
and delays in Belgium. Via the Foursquare API [6], the framework retrieves data
about various other types of POI such as restaurants, bars, shops, etc.

Urbanization. The POI that are retrieved by the Foursquare API are used
to estimate the urbanization of the current location of the user. The more POI
in the neighborhood of the device, the higher the urbanization level of the neigh-
borhood.

Weather. To find out the weather conditions, the location of the user is
first converted into an address via the Google Geocoding API [7]. Subsequently,
the ZIP code of the address is used to retrieve weather information from the
Google Weather API. This information is refreshed after a change in location or

4 Toon De Pessemier et al.

if more than 2 hours have elapsed. To retrieve data about the current weather
and urbanization level, GPS data are not strictly required since an estimation
of the location of the device by the cell-ID is sufficiently accurate.

Movement. Based on location updates of the GPS data (or cell-ID info)
and the coupled timestamps, the framework calculates the current speed and
future position of the user. Together with the information about the POI, the
framework can detect if the user is approaching a POI. For this detection, the
framework considers the type of POI, the direction of the movement, the distance
between the user and the POI at successive times, and the movement speed to
estimate to which POI the user is on the way.

Company. In the application, users can add other users as friends and spec-
ify their relationship with these friends, e.g., husband, child, buddy etc. Besides,
users can opt to share their location data in order to enable the framework to
detect whether different users are in another’s company or whether some of their
friends are in the neighborhood.

Battery. Information about the status of the battery can be used to deduce
contextual information about the user, e.g., charging the battery indicates a fixed
position of the user. (Many users charge their phone while they are at home.)
Data about the battery level can be used to decide to switch off the framework
to extend the battery lifetime.

Available Time. By checking the user’s appointments in the calendar ap-
plication of the phone, the framework can estimate the availability of the user.
Appointments in the near future can influence the behavior of the user. E.g.,
if the user has an appointment within one hour, (s)he might choose a nearby
restaurant to have lunch.

Physical Activity. Recognizing physical activities based on patterns in the
data originating from the accelerometer is the most complicated processing task
of the framework. The framework tries to distinguish four basic activities: stand-
ing still, walking, running, and cycling. These different activities induce different
accelerations along the three dimensions (X-axis, Y-axis, and Z-axis); and these
patterns in the accelerometer data are used to distinguish the basic activities.
An important requirement is that users have to carry the mobile device in their
pocket, so that the movement of the user’s leg can be registered by the device.

Learning to recognize patterns in the accelerometer data is done by training
the framework with samples of real physical activities. To obtain these training
data, accelerometer data from 11 different users (between 16 and 50 years old)
performing the four activities were collected. Every user was asked to perform
one of the basic activities during a 5-seconds time frame while a mobile device
recorded the accelerometer data. This was repeated for all four basis activities,
thereby yielding 44 training samples. These training data clearly showed different
patterns for the four activities, as shown in Figure 1. Standing still induces
the least activity on the accelerometer, cycling produces a data pattern with a
periodic variation in time, and running shows more energy than walking.

These training data were used for determining the five discriminating features
based on which the four basic activities are distinguished:

Context and Activity Recognition for Personalized Mobile Recommendations 5

(a) (b)

(c) (d)

Fig. 1. The data of the accelerometer obtained while doing physical activities.

1. The average resultant acceleration, i.e., the average of the square root of the
sum of the values of each axis squared

√
x2
i + y2i + z2i .

2. The difference between maximum and minimum acceleration (for each axis).
3. The average deviation to the mean (for each axis), i.e., the average of the

absolute difference between a measured sample of the acceleration and the
mean acceleration.

4. The sum of the squared deviations to the mean value (for each axis), i.e., the
sum of the squared differences between a measured value of the acceleration
and the mean acceleration.

5. The deviation of the acceleration (for each axis), i.e., the average of the
absolute difference between a measured sample of the acceleration and the
sample measured after three time units (so after 60 ms).

The first three of these discriminating features were also identified in related work
with respect to activity recognition on mobile devices [13]. Discriminating feature
(4) and (5) help to distinguish the basic activities based on typical characteristics
such as the required energy for the activity and the variation of the acceleration
in time.

Based on these discriminating features, newly-acquired accelerometer data
can be classified into one of the basic activities. This classification task is per-
formed by using Support Vector Machines (SVM) with an RBF-kernel. Using
cross validation thereby considering the data from 1 user as test data and the

6 Toon De Pessemier et al.

data from the other users to train the model, each of the 44 logged activities
could be classified correctly by the SVM model.

Proximity. As explained in Section 2.1, the data of the proximity sensor can
indicate that the device is not in the pocket of the user. Since the recognition
of physical activities requires the user to carry the device in his/her pocket, this
proximity data can indicate if the activity recognition is reliable.

2.3 Analyzing

Based on the basic activities that are recognized by processing the accelerometer
data and the additional contextual information gathered in the processing phase,
the framework can recognize more complex user behavior. The underlying idea
of the analyzing phase is that complex user behavior consists of different basic
contexts which have some relation with each other. E.g., “The user is walking
home while it’s rainy” consists of “The user is walking”, “The user is approaching
his/her house” and “it’s rainy”. The common conditional relationship between
these basic contexts is the timing; they have to occur at the same time.

So to recognize complex user behavior, these complex activities are first de-
composed into different basic contexts that have a conditional relationship to
each other. A basic context can be: the current weather, the current time and
day, the battery status and level, being located in an urbanized area, being lo-
cated in the neighborhood of a specific POI, approaching a specific POI, being in
the company of another user, traveling with a specific speed (range), the distance
traveled in a specific time interval, or a physical activity such as standing still,
walking, running, or cycling. For each potential complex activity, the framework
checks if the first basic context matches the data that are gathered in the process-
ing phase. If this is the case, the framework checks the conditional relationship
of this basic context to the second basic context. The conditional relationship
can indicate that the second basic context has to occur in parallel with the first
basic context or within a specified time frame (e.g., within the next 60 minutes
after the first context was detected). So upon detecting the first context, until
the conditional time frame has elapsed, the framework monitors the sensor data
and tests if the processed data match the pattern of the second basic context.
This procedure of matching the processed sensor data to the basic contexts and
testing the conditions, is repeated for all basic contexts and conditions of the
complex activity.

As soon as one of the basic contexts of the complex activity cannot be
matched to the processed sensor data or one of the conditions between the ba-
sic activities is not met, the complex activity cannot be recognized. Only if all
basic contexts are recognized and all conditions are met, the complex activity is
flagged as recognized.

An example of a complex activity is “taking the train” which is composed
of the following subsequent basic contexts: 1) The user is approaching a railway
station. 2) The user is in the neighborhood of a railway station. 3) GPS connec-
tion is lost. Although GPS data are available inside a car, GPS data are in most
cases not available inside the train. 4) The user is traveling with a minimum

Context and Activity Recognition for Personalized Mobile Recommendations 7

speed. In this case, location updates are based on the cell-ID, because GPS info
is not available. 5) In parallel with 4), the user is traveling in the direction of
another (nearby) railway station. As soon as these basic contexts and conditions
are recognized, the framework believes that user is traveling by train. This com-
plex activity does not include the act of arriving at the railway station of the
destination. If the destination would be included in the complex activity, then
the activity could only be recognized after the train journey. Nevertheless, for
many applications such as personalized information and recommendations, the
recognition has to be performed as soon as possible during the user activity. In
the current implementation, a set of complex activities is defined, but depending
on the use case, the framework can also be extended with new complex activities
by composing existing or new basic contexts and conditions.

3 Context-Aware Recommendations

Based on the contextual information that is provided by the context-recognition
framework, we developed a context-aware recommender system that offers per-
sonalized information according to the preferences and current context of the
user.

As shown in Figure 2, the recommendation process consists of three successive
phases:

1. Determining the categories of information that are most suitable according
to the current context of the user.

2. Retrieving the information of the items of these selected categories.
3. Recommending the most suitable items from the retrieved information ac-

cording to the context and preferences of the users.

After determining the categories and selecting the items, an aggregator combines
the partial results.

3.1 Determining the Categories

In the first phase, the recommender system receives the current context of the
user as input, and predicts the information categories that match this context.
One obvious example: if the user is approaching a railway station, information
regarding the train schedule might be interesting for the user. To determine the
suitability of an information category, four information models work together:
the activity model, preferences model, popularity model, and history model.
Each of these models assigns a probability score to each information category.
This score estimates the conditional probability that the user is interested in in-
formation of the specific category, given the current context of the user. The in-
formation categories that are used are: Food (restaurants, bakeries, etc.), Movies
(schedules, descriptions, etc.), Trains (schedules, delays, etc.), Monuments (info
about churches, statues, etc.), and News (newspaper articles, RSS feeds, etc.);
but the system can easily be extended with other categories.

8 Toon De Pessemier et al.

Determine

Categories

Retrieve

Information

Recommend

Items

Restaurants,
Bars, Shops

Trains
Landmarks,
Museums,

Monuments

Activity
Model

Preferences
Model

Population
Model

History
Model

Movies News

Stated
Preferences

Collaborative
Filtering

Distance
Punisher

Learned
Preferences

Boredom
Punisher

Fig. 2. Schematic overview of the recommendation process, which consists of three
successive phases: determining the categories, retrieving the information, and recom-
mending the items. The activity model, population model, and collaborative filter are
based on the knowledge of all users of the system; the other models are based on a
single user’s personal data.

Activity Model. The activity model is a knowledge-based system, consist-
ing of a set of general rules that apply to all users. These rules connect a context
to an information category that may be interesting for the user in that context.
E.g., the context “being in a new city” and “sunny weather” is linked to the
information category “Monuments”, since users might be interested to do some
sightseeing if the weather is good. The context “Evening” is linked to the infor-
mation category “Food”, since information about restaurants for having dinner
might be interesting. These rules are stored as triplets (context, category, score),
in which the score estimates the probability that users are generally interested
in a category, given the specified context.

These general trends of the activity model also offer a solution to the cold
start problem, the initial situation in which no information about the preferences
of the user is available. If no personal preferences are known, the user receives
recommendations based on the knowledge of these general trends.

Preferences Model. The activity model defines rules for the whole com-
munity; but via the preferences model, rules can be specified for each individual
user. This way, user preferences for a specific information category, given a spe-
cific context, can be specified. E.g., user “Alice” always wants to receive items of
the category “News”, if she is traveling by train in the morning. These personal
rules are stored as 4-tuples (user, context, category, score), in which the score
indicates how important this rule is for the user. An initial explicit questionnaire
can be used as input to compose these rules.

Popularity Model. This model keeps track of the historical behavior of
users and learns in which information categories users are interested, given the

Context and Activity Recognition for Personalized Mobile Recommendations 9

context. This learning process is based on the feedback that users can provide
for information categories. Figure 3 shows two screenshots of the user inter-
face of the mobile application and illustrates the possibility to provide feedback.
The popularity model collects feedback information from all users to discover
general relations between a context and an information category. The result of
this model is a set of triplets (context, category, score) in which the score esti-
mates the probability that users are generally interested in a category, given the
specified context. The more users and the more often these users have provided
positive/negative feedback on a content item of a specific category in a specific
context, the higher/lower the score.

(a) (b)

Fig. 3. Screenshots of the mobile application, showing the list of recommended infor-
mation items (a) and the possibility to provide explicit feedback (b).

History Model. In contrast to the popularity model, which learns category
preferences for different contexts on the community level, the history model
learns category preferences for each context on a user level. The model aggregates
the historical behavior of each user into a profile to learn the user’s personal
practices. E.g., user Alice may be interested in the train schedule as soon as she
leaves her home in the morning. So, the history model calculates for every user,
context, and category, a score which estimates the probability that a specific
user is interested in a category, given the context. The more often the user has
provided positive/negative feedback on a content item of a specific category in
a specific context, the higher/lower the score. These personal habits are stored
as 4-tuples (user, context, category, score).

Aggregating the Category Scores. Each of the models generates its own
score which estimates the probability that the user is interested in a specific cat-

10 Toon De Pessemier et al.

egory, given the specified context. To obtain a single probability value for each
category, the individual scores are normalized and aggregated using a weighted
average. In the current implementation, the weights are fixed and set to pri-
oritize the models that reason based on data of the individual users, i.e., the
preferences and history model. The resulting scores determine the importance
of each information category for the user. Therefore, the user receives a propor-
tional number of items of a specific information category as recommendations.
Items of an information category with a high score are more common in the
recommendation list, whereas items of an information category with a low score
are rare or even not present in this list.

3.2 Retrieving the Information

As soon as the most suitable categories are determined, given the preferences
and context of the user, information items belonging to these categories can be
retrieved. Various services are used to retrieve information items of the different
information categories. Information regarding locations or POI (e.g., informa-
tion about monuments, restaurants, shops, bars, trains, etc.), is selected based
on the current location of the user. Potentially interesting data about nearby
railway stations, train schedules, and delays are retrieved via iRail [17]. General
information about POI in the current neighborhood of the user is retrieved via
the Foursquare API [6] and the Google Places API [8]. WikiLocation is the ser-
vice that is used for additional information about monuments and landmarks
that might be interesting for the user [5]. Information about (cultural) events is
available through the service of CultuurNet Vlaanderen [4]. CultuurNet gathers
all information about cultural activities, movies, and events in Flanders (i.e.,
the Northern part of Belgium). This service is used to retrieve e.g., information
about movie theaters and the scheduled movies. Various comparable services
that offer news feeds exist. Because of its structured metadata, the RSS feed of
HLN [10] is used to obtain the latest news articles of different categories such as
sports, business, local news, international news, etc.

3.3 Recommending Items

The last phase of the recommendation process is to select the most appropri-
ate items from the retrieved information of the relevant categories. To accom-
plish this task, five models for selecting items cooperate: the stated preferences
model, learned preferences model, collaborative filtering model, distance pun-
isher model, and boredom punisher model. Each of these models assigns a score
for the usefulness to each item, thereby indicating how interesting or important
the item is for the user. Some of these models consider the preferences of the
user, whereas others are merely based on the current context of the user.

Stated Preferences Model. Through explicit feedback for an item or an
attribute of the item, users can state their preference for a particular item (e.g.,
the user’s favorite restaurant) or for a set of items characterized by the at-
tribute they have in common (e.g., all Italian restaurants). In the user’s profile,

Context and Activity Recognition for Personalized Mobile Recommendations 11

explicit feedback for an item propagates to the attributes and the category of
the item. E.g., a positive evaluation of a news article about soccer induces a
positive assessment for the attributes “Sports” and “Soccer” as well as for the
category “News”. As shown in Figure 3, users can specify these preferences via
a star-rating mechanism in the user interface, thereby creating a personal pro-
file consisting of triplets (user, item or attribute, score). Based on this explicit
profile, the stated preferences model assigns a score to each candidate item by
considering the user’s rating for the item and/or the attributes describing the
item. The context is not considered in the stated preferences model because
of the large number of combinations of context and attribute. Specifying pref-
erences for all these different context-attribute combinations can put a heavy
burden on the user.

Learned Preferences Model. Whereas the stated preferences model is
based on explicit preferences for items and attributes of items, the learned pref-
erences model extracts these preferences from implicit data and learns the user
behavior. By saving the implicit preferences as 4-tuples (user, context, item or
attribute, score), this model can also take into account the context of the user.
This way, the recommender can learn for example that the user likes fast-food
for lunch, a hot soup on a cold winter day, or a soda after running. Also in this
model, feedback for an item propagates to the attributes and the category of the
item.

Implicit feedback is gathered by tracking the user’s location. If the user is
approaching a POI, such as a restaurant or a pub, the framework will monitor
the time that the user is staying at that POI. The hypothesis is that users stay
longer at a POI, e.g., a bar, if they are having fun, whereas they leave the POI
early if they do not like it. Together with the number of visits to the POI, these
data provide some insights into the user’s preference for the POI. The more a user
visits a POI, and the longer (s)he stays there, the better the implicit feedback
for that item. In the current implementation, the implicit feedback is a linear
function of the time of the visit and the number of visits, in which the coefficients
are determined by the information category of the item. These coefficients specify
for instance that spending time in a shop has a different impact than spending
time in a railway station. For items of the category “News”, implicit feedback is
based on the view-time of an article.

Collaborative Filtering Model. This model predicts a score for each item
by using a standard user-based collaborative filtering algorithm, thereby yield-
ing triplets (user, item or attribute, score). Collaborative filtering is a technique
to estimate the preferences of a user for not-evaluated items, by using the pref-
erences of many similar users for these items. These similar users are defined
as users with similar preferences on a set of previously-evaluated items and are
identified by using a similarity metric [3]. Here, the Pearson correlation metric is
used for calculating similarities. Using the preferences of the community, the col-
laborative filtering model assigns the highest scores to the items that best match
the preferences of the user, but neglects thereby the contextual information.

12 Toon De Pessemier et al.

Distance Punisher Model. Since the recommender system has to suggest
location-based items, such as restaurants, shops, train info, or the cinema sched-
ule, the location of these items with respect to the current location of the user
is especially important. The rational behind the distance punisher model is the
users’ preference for nearby items. E.g., if the user is traveling on foot, faraway
places are not attainable and recommendations for these places are undesirable.
Therefore, this model favors items in the direct neighborhood of the user at the
expense of more distant places.

The distance that the user is willing to cover in order to reach a POI depends
on the travel mode of the user. By bicycle, the user can move faster than on foot;
and by car or train, even distant places can be reached. So the physical activity of
the user is important contextual information that is used in the distance punisher
model. Also the weather is a contextual aspect that influences the distance that
users are willing to cover. Traveling on foot or by bicycle in combination with
snow or rain will strengthen the users’ preference for nearby places; whereas in
sunny weather conditions, users might like to walk to their destination.

A measure of the accessibility of a place can be obtained by using distance
decay curves for the different travel modes. For multiple travel modes and dif-
ferent purposes, the distance decay function fits a negative exponential curve, as
demonstrated by research focusing on the detailed relationship between actual
travel behavior and the mean distance to various services [11]. However these
proposed distance decay functions cannot be adopted in this research (without
changes), since the weather is not included as contextual parameter.

So in this research, the usefulness of an item was estimated by a negative
exponential function of the distance, d, weather, w, and physical activity of the
user, a, as shown by equation 1.

usefulness = e−f(d,w,a) (1)

Ideally, the function f should be determined based on actual measurements of
the distance user travel in the various contexts (i.e., weather conditions in com-
bination with transport modes). However in the current implementation, f is
simplified to the product of the distance, a factor determined by the weather,
and a factor determined by the travel mode. Table 1 shows the values of these
factors for illustration. Faster travel modes and better weather conditions are
associated with smaller factors. Smaller factors in combination with the nega-
tive exponential curve induce that additional, further located items can also be
considered as recommendations.

Also the availability of the user can be a limitation and is therefore checked
by this model. Items that are not attainable within the time frame of the user’s
calendar (i.e., before the next appointment), given the user’s transportation
mode, are excluded as potential recommendations.

Boredom Punisher Model. Recommendations should not only reflect the
personal preferences of the user (in a specific context), but also help the user
to find surprisingly interesting items (s)he might not have otherwise discovered.
E.g., recommending the user’s favorite restaurant over and over again might

Context and Activity Recognition for Personalized Mobile Recommendations 13

Table 1. The factors that influence the results of the distance punisher model, a factor
determined by the travel mode and a factor for the current weather condition.

Standing/Walking Running Cycling Car/Train

10 5 3 1

Snow Rain Cloudy Sunny

6 4 2 1

not be useful. In the domain of recommender systems, serendipity is used as a
measure of how useful and surprising the recommendations are [9]. To increase
the serendipity of the recommendations, the boredom punisher model favors the
items that are new for the user at the expense of items that are already explored
by the user (i.e., evaluated or selected for more information).

The information category of the item is an important characteristic that is
taken into account by the model. The schedule of the movie theater for a movie
that the user has already seen and evaluated is not useful, since people normally
do not go to the movie theater twice to see the same movie. Likewise, recom-
mendations for news articles that the user has already read are not desirable. In
contrast, it might be interesting to provide information on a regular basis about
the schedules and delays of a train that the user regularly catches. In conclusion,
new, unexplored items receive the maximum score from the boredom punisher
model. Items that the user has already interacted with, are disadvantaged by a
specified penalty in accordance with the category of the item.

Aggregating the Item Scores. Each of the models discussed above gen-
erates a score that estimates the usefulness of each item based on the current
context and preferences of the user. For each item, these scores are then aggre-
gated into a single estimation of the usefulness, which is used to select a subset
of the items within each information category as recommendations. Similar to
the aggregation of the category scores, the item scores of the individual models
are normalized and aggregated using a weighted average. In the current imple-
mentation, the weights are fixed and set to prioritize the model that estimates
the usefulness based on the explicit preferences of the user, i.e., the stated prefer-
ences model. So to conclude, the category score determines the importance of an
information category and the corresponding amount of slots for that category in
the recommendation list. For each information category, the items with the high-
est estimated usefulness are filling these slots and offered as recommendations
to the users.

4 Evaluation

4.1 Response Time

The response time of the recommender system is dependent on the available
processing power and can be improved by hardware upgrades or parallelization
of the calculations. However since the system queries various services during

14 Toon De Pessemier et al.

operation and information of different content providers is retrieved for the rec-
ommendations, the response time of the system is also strongly influenced by
the response times of these information providers, which are beyond our control.
Therefore, the response times of the various information providers was evaluated
by means of 3000 measurements at different times of the day.

Table 2 shows for all the information providers the type of information they
offer, the mean response time, and the standard deviation on the measurements.
Foursquare showed to be the fastest information provider, but also news of HLN
can be retrieved with a short response time. The response times of CultuurNet
and WikiLocation are longer than the response times of Foursquare and HLN
but still less than 1.5 seconds and so acceptable for the recommender system.
The slowest information provider is iRail with a mean response time of almost
6 seconds for retrieving information about train schedules, railway stations, and
delays. The large standard deviation (approximately 11 seconds) illustrates that
the response times of iRail are highly varying with peaks up to 30 seconds.

Since the recommender system relies on these information providers, the
response times of these information providers directly influence the response
time of the recommender system. Caching data can be a partly solution for
static information about bars, shops, restaurants, landmarks, and monuments
but is not appropriate for rapidly changing information such as train delays and
movie schedules.

Table 2. Response times of the different information providers.

Provider Type of Info Mean Response Time (ms) Standard Deviation

Foursquare Bars, Shops, Restaurants 144 169

HLN News 201 296

CultuurNet Events, Movies 861 217

WikiLocation Landmarks, Monuments 1450 614

iRail Trains 5810 11028

4.2 Data Traffic

Mobile data communication is necessary for the proper functioning of the rec-
ommender system and the underlying context-recognition framework, e.g., for
retrieving information about the POI. Given that some mobile subscriptions are
charging users based on their data traffic, the recommender application (com-
bined with the framework) was evaluated on this criteria.

In this evaluation, we distinguished intensive and non-intensive use of the
application and measured the data traffic for both scenarios. Intensive use of
the application is defined as “very frequently requesting recommendations and
providing feedback”. The scenario of intensive use is simulated in the context
of “walking in a city center”, whereby recommendations are requested for the

Context and Activity Recognition for Personalized Mobile Recommendations 15

current location, and feedback on one of these recommended items is provided
once per minute. The duration of the test was one hour. So during this walk,
recommendations are requested 60 times for different districts of the city, and
as many times feedback on one of these items is processed. Non-intensive use
of the application differs from intensive use by less-frequently requesting rec-
ommendations and sporadically providing feedback. During the one hour walk,
recommendations are requested 5 times and feedback is provided for 3 of these
items.

Table 3 shows the average (avg) and standard deviation (std) of the data
traffic in download and upload direction for intensive and non-intensive use of
the application. These results indicate that even in the case of intensive use of
the application, the total data traffic is only 2.29 MB on average. As a results,
the data traffic required for the functioning of the application is acceptable and
in the range of the data traffic induced by similar mobile applications.

Table 3. Evaluation of the recommendation application and the underlying framework
in terms of data traffic.

Intensive Non-Intensive

Avg Download (MB) 1.97 1.17

Std Download (MB) 0.03 0.08

Avg Upload (MB) 0.32 0.12

Std Upload (MB) 0.02 0.01

Avg Total (MB) 2.29 1.29

Std Total (MB) 0.04 0.08

4.3 User Evaluation

To evaluate the usefulness and effectiveness of the application and the personal
recommendations, a small user evaluation was performed. The test panel con-
sisted of 16 test subjects (12 men and 4 women) who are representative for the
target users of the applications. All test subjects were between 21 and 32 years
old and make daily use of a smartphone. They were asked to download and
install the application on their own smartphone and use it during one week to
retrieve recommendations in their daily environment.

After one week, test subjects received a questionnaire to evaluate the ap-
plication by means of 9 multiple choice questions and 3 open questions. The
multiple choice questions consisted of statements that test subjects had to as-
sess on a 5-point rating scale ranging from “1: totally disagree” to “5: totally
agree”. The goal of the open questions was to inquire for potential improvements
or extensions to the application.

Figure 4 visualizes the answers to the most interesting multiple choice ques-
tions as histograms. The first histogram, Figure 4(a), indicates that all test

16 Toon De Pessemier et al.

subjects experienced the application as “easy to use”. Because of the automatic
context recognition and the straightforward way to retrieve recommendations,
no test subject provided a negative evaluation regarding the usability.

The second histogram, Figure 4(b), gives an indication about how pleasant it
is to use the application. Only three test subjects disagreed with the statement
“I like to use the application”. Detailed feedback of the test subjects explained
their dissatisfaction with the application or the recommendations. According to
one test subject, loading the recommendations takes too much time. Two other
test subjects would like to have more detailed sub-categories. Besides, two test
subjects mentioned the battery drain as a serious drawback. One test subject
did not understand the added value of a recommender system for selecting in-
formation on a mobile device.

The accuracy of the recommendations is assessed by asking the test subjects
if the recommendations are interesting. Except for two people, the test subjects
agreed with the statement that the recommendations of the application are re-
ally interesting for them, as illustrated in the third histogram, Figure 4(c). The
test subject who totally disagreed with this statement had a data connection
problem during the test, which explains why he did not receive (interesting)
recommendations. The ability to help users discovering new and interesting in-
formation or POI, i.e., the serendipity of the recommendations, is assessed via
the last histogram, Figure 4(d). Except for two people (one of them had a con-
nection problem), test subjects confirmed that they can find new and interesting
information or POI via the recommendations.

Via the open questions, test subjects were asked if additional features should
be added to the application, and which existing features should be removed. Four
test subjects suggested to extend the friend-functionality of the application. Be-
sides adding and removing users from their friend list, they would like to see the
context of their friends. They also mentioned the possibility to recommend items
to friends and to see their friends’ feedback on items. One test subject would
like to receive detailed information for additional categories, such as detailed
info about the articles in supermarkets. Another feature on the wish list of the
test subjects is “changing their own current context”. E.g., manually changing
the location would be useful to plan a holiday and retrieve the recommendations
for the holiday destination before arriving. At last, also a more detailed feedback
mechanism consisting of check-ins, likes, and reviews, was mentioned.

Three test subjects indicated that the items of the category “News” might be
superfluous. The friend-functionality was also mentioned two times as a feature
that can be removed from the application, since it was not clear for the test
subjects that this information is used by the recommender.

5 Conclusions

In this research, we investigated how the current context and activity of the
user can be recognized based on sensor data and the accelerometer of his/her
mobile device. The context-recognition framework first monitors and processes

Context and Activity Recognition for Personalized Mobile Recommendations 17

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5
Fr

e
q

u
e

n
cy

Subjective Evaluation

The application is easy to use

Fr
e

q
u

e
n

cy

I discover new, interesting
(a) Usability

Subjective Evaluation

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Fr
e

q
u

e
n

cy

Subjective Evaluation

I like to use the application

(b) Attractiveness

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Fr
e

q
u

e
n

cy

Subjective Evaluation

I get really interesting
recommendations by using the

application

(c) Accuracy

Subjective Evaluation

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Fr
e

q
u

e
n

cy

Subjective Evaluation

I discover new, interesting
things by using the application

Fr
e

q
u

e
n

cy

(d) Serendipity

Fig. 4. The answers on the multiple choice questions of the user evaluation.

the sensor data to recognize basic activities or context changes. Then these suc-
cessive basic activities are analyzed to recognize the overall context of the user.
An evaluation of the framework proved that physical activities and the context
of the user can be recognized with a high accuracy and that this contextual in-
formation can be valuable knowledge for a context-aware recommender system.
Besides, the framework can be used for other applications, e.g., for monitoring
the physical activities of the user in the context of health care.

Several challenges, such as the response time and the data traffic, are as-
sociated with the development of the context-recognition framework and the
recommender on top of it. Experiments demonstrated that the response times
of information providers can have a big influence on the response time of the
recommender system. The data traffic required for the recommender is limited
to a couple of MB per hour, even in the case of intensive use, by constraining
the recommendations to the current context of the user.

A user study showed that context-aware recommendations are effective and
helpful for discovering new places and interesting information. Moreover, users
like to receive information tailored to their current needs and consider the rec-
ommender application as easy to use. These results confirm the necessity to
adapt (mobile) applications and services to the activity and context of the user
in order to improve the effectiveness and the user experience.

18 Toon De Pessemier et al.

References

1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Trans. Inf. Syst. 23(1), 103–145 (Jan 2005), http://doi.acm.org/10.1145/
1055709.1055714

2. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In:
Ferscha, A., Mattern, F. (eds.) Pervasive Computing, Lecture Notes in Computer
Science, vol. 3001, pp. 1–17. Springer Berlin / Heidelberg (2004), http://dx.doi.
org/10.1007/978-3-540-24646-6_1

3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence. pp. 43–52. UAI’98, San Francisco, CA, USA (1998),
http://dl.acm.org/citation.cfm?id=2074094.2074100

4. CultuurNet-Vlaanderen: Uitdatabank developer tools (2012), http://tools.

uitdatabank.be/docs

5. Dodson, B.: Wikilocation (2012), http://wikilocation.org/
6. Foursquare: Foursquare API (2012), https://developer.foursquare.com/
7. Google: Geocoding API (2012), https://developers.google.com/maps/

documentation/geocoding/

8. Google: Places API (2012), https://developers.google.com/places/

documentation/

9. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (Jan 2004),
http://doi.acm.org/10.1145/963770.963772

10. HLN: Rss news feed (2012), http://www.hln.be/rss.xml
11. Iacono, M., Krizek, K., El-Geneidy, A.: Access to destinations: How close is close

enough? estimating accurate distance decay functions for multiple modes and dif-
ferent purposes. Tech. rep., University of Minnesota, Twin Cities. Minnesota De-
partment of Transportation (2008), ref.: MN/RC 2008-11

12. Kenteris, M., Gavalas, D., Mpitziopoulos, A.: A mobile tourism recommender sys-
tem. In: Proceedings of the The IEEE symposium on Computers and Communi-
cations. pp. 840–845. ISCC ’10, IEEE Computer Society, Washington, DC, USA
(2010), http://dx.doi.org/10.1109/ISCC.2010.5546758

13. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (Mar 2011), http://doi.

acm.org/10.1145/1964897.1964918

14. Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors.
Pervasive Computing, IEEE 1(3), 24 –32 (july-sept 2002)

15. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from ac-
celerometer data. In: Proceedings of the 17th conference on Innovative applications
of artificial intelligence - Volume 3. pp. 1541–1546. IAAI’05, AAAI Press (2005),
http://dl.acm.org/citation.cfm?id=1620092.1620107

16. Ricci, F.: Mobile recommender systems. Information Technology & Tourism
12(3), 205–231 (2010), http://www.ingentaconnect.com/content/cog/itt/

2010/00000012/00000003/art00002

17. Tiete, Y., Schmitz, S., Colpaert, P.: iRail API (2012), http://project.irail.be/
wiki/API/APIv1

