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Abstract—We present an offline calibration method to correct
the non-linearity due to DAC element mismatch in distributed
feedback SigmaDelta-modulation A/D-converters. The improve-
ment over previous methods is that not only the first feedback
DAC is calibrated, but also the DACs that are coupled to later
stages can be calibrated as well. This is needed in the case of
Sigma Delta modulators with a low OSR, where the contribution
of the second feedback DAC should not be neglected. The
technique is based on a calibration measurement with a two-tone
input signal.

I. INTRODUCTION

The continuous evolution toward higher bandwidth has
increased the interest for Σ∆-modulators with a low over-
sampling ratio (OSR). In this case multibit quantization is
almost unavoidable. It is well known that the resolution is
then limited by the linearity of the feedback digital-to-analog
converter (DAC) [1]. This way, some kind of linearization
scheme is needed if linearity beyond the intrinsic device
matching is required. For this purpose, in the past, dynamic
element matching (DEM) techniques have been successfully
exploited [1]. With such techniques the DAC mismatch errors
are spectrally shaped and as a result greatly reduced within
the low-frequency signal band as well. But DEM techniques
inherently become less efficient when the OSR is reduced and
a larger fraction of the Nyquist band is occupied by the signal
band. This is particularly true for the popular Data weighted
averaging (DWA)[2] which achieves only first order shaping
of the DAC mismatch errors. Moreover, such DEM-technique
must act upon the feedback DAC, which is inside the loop.
This way all DEM-techniques put stress on the latency budget
and become problematic at high clock speeds.

A solution for these problems is to compensate the DAC
mismatch errors in the digital domain. This can be done outside
the modulator loop and as such doesn’t limit the modulator
speed. The implementation of this is based on a look-up table
(LUT) in which a digital estimation of the DAC mismatch
errors is stored. This LUT is then used to correct the digital
output of the modulator during normal operation. Obviously,
the performance of such a LUT-based compensation scheme
depends on the accuracy of the digital estimation of the
mismatch errors. Therefore, the actual calibration, i.e. the
process of determining the mismatch errors, is essential. In
a related work [3] a background calibration scheme for this
was presented. But this increases the modulator complexity
and also adds some blocks inside the loop, which might be a
problem in high speed modulators. An alternative is the offline
calibration of [4]. It is based on a single measurement with a
spectrally pure sine wave, from which the DAC mismatch er-

Fig. 1. A CIFB Σ∆-modulator structure.

rors are then estimated. This work was focused on modulators
where only one global feedback DAC needed to be calibrated.
However, in a distributed feedback Σ∆-modulator, multiple
feedback DACs coupling to the successive integrator stages,
are used (see fig. 1). Usually the first DAC will dominate the
overall distortion and by neglecting the errors of the other
DACs we can use the technique of [4]. However, as will be
shown in section II, at low OSR also the contribution of the
subsequent DACs (DAC2, DAC3, ...) will become significant
and limit the performance.

In this paper, we present an improved offline calibration
method and compensation scheme that corrects the error
contribution of these subsequent DACs as well. For this, we
start with an exact analysis of the non-linearity of the overall
distributed feedback modulator due to DAC element mismatch
in section II. The results of this analysis are then used in
sections III and IV where the improved calibration method
and compensation scheme are derived respectively. Section V
presents the measurement results on an integrated prototype
where the presented method is used for DAC mismatch com-
pensation.

II. EXACT ANALYSIS OF NON-LINEARITY DUE TO
ELEMENT MISMATCH

Fig. 1 shows a Σ∆-modulator with a distributed feedback
topology (CIFB as in [1]). A quantizer is embedded in a control
loop with loop filter H(z). The loop filter H(z) is of Kth-
order and consists of a cascade of K integrators, each with
a gain ck. The digital output D of the multibit quantizer is
fed back toward every integrator stage of the loop filter using
K feedback paths. In every feedback path the DAC converts
the digital output d into an analog signal vk to which a gain
ak is applied. The additional feed-in paths of the input signal
Vin are added to create what is commonly known as a low-
distortion topology [5]. A common analysis for this system
models the quantizer as an additive white noise contribution
Q and all DACk in the feedback path are assumed to be ideal.



The digital output D(z) of the complete system can then be
written in the Z-domain as:

D(z) =

(
H(z)

1 +H(z)
+ 1

)

︸ ︷︷ ︸
STF(z)

Vin(z) +
1

1 +H(z)︸ ︷︷ ︸
NTF(z)

Q(z) (1)

From eq. (1) it is readily seen that STF (z) = 1. The
quantization noise transfer function (NTF ) can in general be
written as:

NTF (z) =

∏K
k=1(z − zk)

PK(z)
(2)

Here, PK(z) is an Kth-order polynomial describing the pole
placement of the NTF . The zeros zi can be optimized by
applying local feedback around the integrator stages [6] and
as such spreading them over the low pass signal band. For
the remainder of this paper however, we will assume that all
zeros zk = 1. This will ease the equations, but it should be
noted that the analysis also holds for the general case where
the NTF-zeros are spread over the signal bandwidth.

In practice, all DACk will have some mismatch. We will
assume that each DAC has a similar topology and consists
of N levels. To analyze the effect of this mismatch, first we
introduce the DAC-level selection signals xi, which are defined
as:

xi (n) =

{
+1, if the ith DAC-level is selected
0, else

(3)

This way, there are N selection signals, and there is always
exactly one selection signal high at the same time. We can
now write each feedback signal vk as

vk(n) =
N∑

i=1

xi(n)·Ck,i (4)

where Ck,i corresponds to the ith DAC-level of the kth
feedback DAC. The DAC non-linearity manifests itself in
the sense that the actual DAC levels Ck,i deviate from their
nominal values Cnm,k,i by a mismatch error εk,i. If we assume
all DACs to be equal, we can assume Cnm,k,i = Cnm,i. Each
DAC output vk can now be written as

vk(n) =

N∑

i=1

xi(n)·(Cnm,i + εk,i) = vnm(n) +

N∑

i=1

xi(n)·εk,i
︸ ︷︷ ︸
eDAC,k(n)

(5)

where we have introduced eDAC,k, the error signal of the ith
DAC. Every feedback signal can thus be written as a nominal
feedback signal vnm and an error contribution eDAC,k.

Fig. 2 then shows the model of the CIFB-structure where
the mismatch signals eDAC,k are added to the system. Each
feedback DACk is modeled as an ideal DAC with output vnm
with added mismatch contribution eDAC,k. If we now analyze
the digital output D of this modulator model, we find:

D(z) = Vin(z) + NTF (z)Q(z)−
K∑

k=1

ETF k(z)EDAC,k(z)

(6)

Fig. 2. The CIFB Σ∆-modulator model where the DACs are replaced by
an ideal DAC and additional error signals eDAC,k .
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Fig. 3. The output PSD of Σ∆-modulator with only mismatch in DAC2 (a)
without and (b) with the proposed compensation method (eq. (19).

Here, we have introduced the error transfer function (ETF )
for each error signal eDAC,k, which denotes the contribution
of that error signal to the output D. Each ETF k can be written
as:

ETF k(z) = NTF (z)ak

K∏

j=k

cj
z − 1

(7)

If we look at the contribution of the mismatch of the first DAC
(eDAC,1) and using (2), we find:

ETF 1(z) = NTF (z)
a1

(z − 1)K

K∏

j=1

cj =
a1

PK(z)

K∏

j=1

cj (8)

We can write the contribution of subsequent DAC errors
(eDAC,2, eDAC,3, ... eDAC,K) in terms of ETF 1(z):

ETF k(z) =
ak
a1

(z − 1)k−1
∏k−1

j=1 cj
ETF 1(z) (9)

To show that the contribution of the subsequent DACs can
indeed be significant, fig. 3(a) shows the base-band output
power spectral density (PSD) of a 3rd-order Σ∆-modulator
(the NTF is designed according to [6] with ||H||∞ = 2.4
and OSR=16) where only DAC2 has mismatch. The modu-
lator uses 32 unit elements, each with a normally distributed
random mismatch with σ = 1%. The linearity of this two-
tone measurement is limited by the 3rd-order intermodulation
product (IM3) at −71 dB.

III. ESTIMATION OF MISMATCH ERRORS

The estimation of the mismatch errors occurs in an off-line
procedure prior to the normal operation. For this we apply a



signal s(t) to the Σ∆ ADC. Based on (6), we can write the
output d(n) of the modulator as :

d(n) = s(n) + ntf (n) ? q(n)−
N∑

k=1

etfk (n) ? eDAC,k(n)

(10)

We will use a digital decimation low-pass filter L(z) (with cor-
responding impulse response l(n)) to remove the quantization
noise contribution:

dLP(n) =sLP(n) + enoise,LP(n)

−
K∑

k=1

l(n) ? etfk (n) ? eDAC,k(n) (11)

Here, enoise,LP contains the electrical noise as well as the
residual quantization noise that may still be present. Applying
the definition of the DAC error signals eDAC,k of eq. (5) we
find:

dLP(n) =sLP(n) + enoise,LP(n)

−
K∑

k=1

N∑

i=1

l(n) ? etf k(n) ? xi(n)·εk,i (12)

Now, we introduce the filtered selection signals xEL,k,i =
l(n) ? etf k(n) ? xi(n) and the residue signal r(n), which is
equal to:

r(n) = dLP(n)− sLP(n) (13)

If the applied signal s(t) is known, then also it’s digitized
version sLP(n) is known. E.g. if s(t) is a combination of
spectrally pure sine waves, sLP(n) can easily be estimated
using standard curve fitting algorithms such as IEEE-STD-
1057 [7], [8]. The residue signal r(n) is then evaluated as the
remaining curve fit error after elimination of the different sine
waves and hence can be considered to be known. We now find:

r(n) = enoise,LP(n)−
K∑

k=1

N∑

i=1

xEL,k,i(n)·εk,i (14)

From this equation, we observe that we can obtain an esti-
mation ε̂i,j of the different DAC errors by performing a least
mean square minimization (LMS):

E





(
r(n) +

K∑

k=1

N∑

i=1

xEL,k,i · ε̂k,i
)2




= E
{
e2noise,LP

}
︸ ︷︷ ︸
noise variance

+ E





(
K∑

k=1

N∑

i=1

xEL,k,i · (ε̂k,i − εk,i)
)2




︸ ︷︷ ︸
calibration error variance

(15)

Observing the calibration error variance, we find that the LMS
optimization corresponds to a correct estimation of εi,j . In
practice, we will use a finite measurement interval. As a result,
(15) must be approximated as the LMS over a finite data set
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Fig. 4. The calibration setup with a two-tone test signal s(t) .

of T data points. This way, we will find the DAC errors εk,i
by minimizing

T∑

n=1

(
r(n) +

K∑

k=1

N∑

i=1

xEL,k,i(n) · ε̂k,i
)2

(16)

with regard to ε̂k,i. This can be expanded into

∂

∂ε̂j,m

T∑

n=1

(
r(n) +

K∑

k=1

N∑

i=1

xEL,k,i(n) · ε̂k,i
)2

= 0,∀j,m

(17)

with j = 1..K and m = 1..N . This yields a system of K×N
equations (N mismatch errors for K feedback DACs) for the
K ×N unknown DAC errors ε̂k,i:

T∑

n=1

r(n)xEL,j,m(n) =

T∑

n=1

K∑

k=1

N∑

i=1

xEL,j,m(n)xEL,k,i(n) · ε̂k,i ,∀j,m (18)

All coefficients in this system can easily be evaluated and
solving this system is trivial. Fig. 4 then shows the calibration
measurement setup. As shown in eq. (9), the contribution of the
subsequent DACs (DAC2, DAC3, ...DACK) is differentiated.
It is however important that the applied calibration signal
s(t) results in a non-linear contribution in the output that is
very sensitive to the contribution of the error signals of the
subsequent DACs (eDAC,2, eDAC,3, ... eDAC,K). Therefore, the
calibration setup must be a two-tone test with frequencies at
the edge of the signal band where the differentiation factor
(z − 1) is at its maximum. Eliminating the two sine waves
from the output signal is trivial using IEEE-STD-1057, and the
remaining residue of the double sine fit is r(n) as in eq. (13).

IV. LUT-BASED COMPENSATION

A. General compensation scheme

After estimating the DAC mismatch errors ε̂k,i in an offline
calibration cycle, they are permanently stored in a look-up
table (LUT). Fig. 5 then shows the modulator during normal
operation. The corrected output dcal(n) is then calculated as:

dcal(n) = d(n) +
N∑

i=1

K∑

k=1

etfk (n) ? xi(n)·ε̂k,i (19)

Fig. 3(b) shows the simulated output spectrum of the same
Σ∆-modulator as in fig. 3(a), but this time using the proposed
compensation method (eq. (19). All distortion tones are now
reduced to beneath the quantization noise floor.



Fig. 5. The Σ∆-modulator during normal operation with DAC mismatch
compensation.

B. Discussion

The filters ETF k(z) are of Kth-order (the order of the
modulator) and the coefficients of PK are in general non
integer and as such require considerable calculation effort. This
is not a problem during the one time offline calibration cycle
where the mismatch errors are determined, but applying these
filters to the selection signals during normal operation might
add considerable effort. The compensation scheme of fig. 5
can be simplified by reducing the complexity of the ETF k(z).
Eq. (8) can be approximated to 1 for signals at DC (z ≈ 1):

lim
z→1

ETF1(z) = 1 (20)

Using this, also the higher order ETF k(z) complexity can be
further reduced, as (9) can now be approximated as:

ETF k(z) =
ak
a1

(z − 1)k−1
∏k−1

j=1 cj
(21)

The differentiation factor (z − 1)k−1 is easily calculated and
the gain factor ak/(a1

∏k−1
j=1 cj) in general can be expected to

be close to integer.

As expected, we find that the contribution of each eDAC,k

is (k − 1)-times differentiated. For high OSR, z − 1 ≈ 0 for
signals within the signal band and the contribution of all but
the first DAC can be neglected when looking at the non-
linearity of the overall modulator. However, when targeting
high accuracy Σ∆-modulators with low OSRs, the assumption
z − 1 ≈ 0 does not hold anymore, and the contribution of the
other DACs (in practice DAC2) can not be neglected. The
mismatch errors in the subsequent DACs are also increased
as subsequent integrator stages are in general scaled down to
reduce power consumption. As a result, these DACs will be
made with smaller devices which will increase their mismatch.

V. EXPERIMENTAL RESULTS

The proposed calibration procedure and compensation
scheme are tested on an integrated switched-capacitor Σ∆-
modulator prototype with 3rd-order noise shaping and a signal
bandwidth of 1.25 MHz for an OSR of 12. This is not a state-
of-the art Σ∆-modulator in terms of signal bandwidth, but it is
here only used to illustrate the proposed calibration procedure.
The quantizer has 9 quantization levels. The mismatch errors of
the first two DACs (DAC1 and DAC2) are determined during a
calibration cycle with a two-tone signal at frequencies 975 kHz
and 1025 kHz and at −10 dBFS amplitude using the calibration
setup as shown in fig. 4. The ETFk(z) are approximated
as in equations (20) and (21). Fig. 6(a) shows the measured
compensated output spectrum when applying a two-tone signal
at frequencies 1000 kHz and 1050 kHz with −9.5 dBFS when
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Fig. 6. The measured output PSD for a two-tone test on a distributed feedback
Σ∆-modulator with 1.25 MHz bandwidth (OSR=12) when the mismatch
errors of (a) only DAC1 are compensated and (b) both DAC1 and DAC2

are compensated.

only the mismatch errors of DAC1 are compensated. We see
that the IM3 is at −75 dB. When the mismatch errors of DAC2

are also compensated, the IM3 is further reduced to beneath
the noise floor as shown in fig. 6(b).

VI. CONCLUSION

An improved offline calibration method for DAC mismatch
errors in low oversampling multibit SigmaDelta ADCs has
been presented. It allows to calibrate every DAC in a dis-
tributed feedback structure. The technique uses a single two-
tone test and calculates the DAC mismatch errors from the
resulting digital output signal. The mismatch errors are then
stored in a LUT from which the compensated digital output
signal is calculated during normal operation.
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