Modeling the target selection process of residential burglars in Flanders at the community and house-level

Lower risk compensates increased travel effort

Christophe Vandeviver

t. +32 9 264 97 16 f. +32 9 264 84 94 e. Christophe.Vandeviver@UGent.be

26 November, 2014

Introduction

26 November, 2014

ASC 41, San Fracisico USA

Burglars' target selection process

- Distance decay: most burglars prefer nearby targets
- Some burglars select remote targets (e.g., Polisenska 2008, Rattner & Portnov 2007, Smith et al. 2009, Van Daele & Vander Beken 2009)

Why do burglars select remote targets?

What municipality and house-level attributes mediate effect of distance?

Current application

research

Discrete spatial choice approach

conferences

Ultimate outcome: residence, 500,000+ alternatives

consultancy

• 1 province, 3,000km², 1.5 mill. inhabitants, 12 cities & 53 towns

www.ircp.org

publications

Theoretical framework

26 November, 2014

ASC 41. San Fracisico USA

Advantages of selecting remote targets

- Higher profits (e.g., Morselli & Royer 2008, Snook 2004)
- Reduced risk of detection & chance of arrest (e.g., Capone & Nichols 1978)
- But ... cause or effect?
 - Financial info is uncertain/unavailable when target is selected (Vandeviver, Van Daele & Vander Beken 2014)
 - Police info exchange may explain reduced chance of arrest (Lammers & Bernasco 2013)

Burglars' target selection process

conferences

consultancy

- Environmental attributes at multiple levels of spatial aggregation
- Optimization of rewards, efforts & risks

publications

Discrete spatial choice approach

26 November, 2014

ASC 41, San Fracisico USA

Discrete choice framework

- Random utility maximization (McFadden 1973)
- Decision-makers, choice & alternatives, attributes, decision rule
- Conditional logit model
- Preferred method of studying location choice (Bernasco & Nieuwbeerta 2005)

Sampling of alternatives

- ML estimation is computationally extremely intensive
 - 650 burglars * 503,589 alternatives = 327,332,850 decision-maker-by-alternative combs.
- Solution: random sample of alternatives

conferences

Min. 1/8th size of choice set (Nerella & Bhat 2004)

consultancy

650 burglars * 62,948 alternatives = 40,916,200 decision-maker-by-alternative combs.

www.ircp.org

IRCP Institute for International Research on Criminal F

publications

Study area

26 November, 2014

ASC 41, San Fracisico USA

3,000km²
1.5 mill. inhabitants
12 cities & 53 towns

- Targets
- ---- Major roads

Population density (inh./km²)

- < 223
- 224 333
- 334 503
- 504 898
- > 1535

0 5 10 20 km

research

publications

conferences

consultancy

www.ircp.org

26 November, 2014

ASC 41, San Fracisico USA

Decision-makers & choices

- Belgian Federal Police
- Period: 2006-2012
- 650 burglaries committed by unique, single offenders

Attributes & alternatives

- Municipality characteristics (Statbel & Belgian Federal Police)
 - 65 municipalities
 - E.g., real estate value, population density, residential mobility, clearance rate
- Housing data (Belgian Land Registry)

conferences

consultancy

- 503,589 residences
- E.g., construction type, number of floors, rooftop living floor, number of garages, central heating, built surface

www.ircp.org

publications

Overview of environmental cues in models

26 November, 2014

ASC 41, San Fracisico USA

Spatial aggregation	Attribute	Criterion
	Real estate value Population density	Reward
Municipality	Highway present Road density	Effort
	Ethnic heterogeneity Residential mobility Clearance rate	Risk
	Number of garages Built surface	Reward
Residence	Central heating Construction type Distance	Effort
	Number of floors Rooftop living floor	Risk

research publications

conferences

consultancy

www.ircp.org

26 November, 2014

ASC 41, San Fracisico USA

Ghent Uni. High Performance Computing environment

- Model estimation time- and resource-intensive
 - Walltime: 22 hrs. for sampling of alternatives & 24 hrs. for model estimation
- 1 'Dugtrio' node
 - 4 dual socket Intel Xeon X5675 hexacore w/ 192 GB physical memory
- R v. 3.0.2 w/ ICTCE 5.5.0
 - Package 'survival'

Main & interaction effects

- Main effects model: all choice criteria are equally important
- Interaction effects model: choice process of burglars weighing target specific attributes and distance simultaneously

www.ircp.org

conferences

consultancy

publications

Results: JTC length

26 November, 2014

ASC 41, San Fracisico USA

www.ircp.org

conferences

consultancy

publications

Spatial aggregation	Attribute	OR	Interpretation
	Real estate value	.99	
	Population density	.94	
	Highway present	.80	
Municipality	Road density	.99	
	Ethnic heterogeneity	1.14**	<u>Lower</u> risk, <u>higher</u> odds of selection
	Residential mobility	.89	
	Clearance rate	1.05**	Higher risk, higher odds of selection (!)
	1 or more garages	.82*	Higher reward, lower odds of selection
	Built surface	1.00	
	Central heating	.68***	<u>Higher</u> effort, <u>lower</u> odds of selection
Residence	Semi-detached	.75*	<u>Lower</u> effort, <u>lower</u> odds of selection (!)
	Detached	.85	
	Distance	.80***	Higher effort, lower odds of selection
	1 or more floors	.87	
	Rooftop living floor	.93	
26 November, 2014	ļ	ASC 41, San Fracisico USA	10

Results: Main effects only model

26 November, 2014

ASC 41. San Fracisico USA

General target selection process of burglars

Reward is unimportant

- Residences w/ 1 or more garages have ↓ odds of selection
 - Burglars select potentially less rewarding residences
- Residence-related attributes do not inform burglars' target choice (>< ethnography)

Minimal effort

- Distance ↓ odds of selection
 - Distance decay
- Residences w/o central heating have ↑ odds of selection
 - · Easier to break into
- Terraced houses have ↑ odds of selection
 - Cognitive bias in ethnography?
- Effort assessed through residence-related attributes

Risk

research

Ethnic heterogeneity rate 个 odds of selection

conferences

- Clearance rate ↑ odds of selection
 - Unable to assess objective risk (cf. Van Daele & Vander Beken 2011)

consultancy

Risk assessed through municipality-related attributes

IRCP Institute for International Research on Criminal Policy

publications

www.ircp.org

Spatial aggregation	<u>Distance*Attribute</u>	OR	Interpretation (for remote residences)
	D*Real estate value	1.00	
	D*Population density	.99	
	D*Highway present	.95*	<u>Lower effort</u> , <u>lower</u> odds of selection (!)
Municipality	D*Road density	1.00	
	D*Ethnic heterogeneity	1.02**	<u>Lower</u> risk, <u>higher</u> odds of selection
	D*Residential mobility	1.02	
	D*Clearance rate	1.00	
	D*1 or more garages	1.00	
	D*Built surface	1.00	
	D*Central heating	.97	
Residence	D*Semi-detached	1.03	
	D*Detached	.98	
	D*1 or more floors	.95**	Conv.: <u>Lower</u> risk, <u>higher</u> odds of selection
	D*Rooftop living floor	.95**	Conv.: <u>Lower</u> risk, <u>higher</u> odds of selection
26 November, 2014	1	ASC 41, San Fracisico USA	A 12

Results: Interaction effects model

26 November, 2014

ASC 41, San Fracisico USA

Burglars actively deploy compensation strategies when targeting remote residences (cf. Vandeviver, Van Daele & Vander Beken 2014)

Lower risk compensates increased travel efforts

- When distance is taken into account, risk-related residence attributes gain importance
- Not just a lucky coincidence, but actively deployed compensation strategy (cf. theoretical framework)

Perceived rewards are unimportant

No effect of reward-related attributes

conferences

Targeting remote residences is not compensated by higher perceived reward

Reduced efforts to reach target are unimportant

consultancy

www.ircp.org

publications

Conclusion

26 November, 2014

ASC 41, San Fracisico USA

Distance decay but 20% prefer remote targets

Lower risk compensates travel effort

- Targets with reduced risk are preferred
- Actively deployed compensation strategy

Perceived rewards are unimportant

- Distance is not compensated by selecting potentially more rewarding targets
- Opposite effect is observed!

www.ircp.org

conferences

consultancy

publications

www.ircp.org

Contact Speaker

Christophe Vandeviver

- t. +32 9 264 97 16
- f. +32 9 264 84 94
- e. Christophe. Vandeviver@UGent.be

IRCP

Ghent University Universiteitstraat 4 B – 9000 Ghent

