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Introduction

Goal: justify the use of Dirichlet priors by imposing philosophical
principles on predictive inference rules, namely:

1 Exchangeability;

2 Coherence;

3 Open-mindedness; and

4 Learning from experience.

We combine them with an additional requirement: the partition
invariance principle, closely related to W. E. Johnson’s
sufficientness postulate.
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From priors to predictions

Bayes (1763): given that we have observed k successes in the first
n trials, what is the probability that the next trial will be a success
(or a failure)? Question easily generalised to the multivariate case
and to any (finite) number of future trials.

Definition 1 (Predictive inference rule)

A predictive inference rule, RX , gives, for any finite initial sequence
of realised experiments {Xi = ei}ni=1, a numerical prediction in
[0, 1] about any proposition on a finite number of future
experiments.
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From priors to predictions

Bayes’ solution: (potentially) infinite sequence of binary random
quantities assumed to be conditionally i.i.d. given θ, the
probability of “success”.

Bayesian paradigm: prior for θ, Π(θ) and, from it, derive the
probability of any given sequence (X1 = e1, . . . ,Xn = en) ∈ {0, 1}n,
in which we observe k successes in n trials:∫ 1

0
θk(1− θ)n−kdΠ(θ) = P(X1 = e1, . . . ,Xn = en), (1)
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From priors to predictions: open-mindedness

In order not to have problems when constructing predictive
inference rules in this way, we impose the following condition.

Definition 2 (Open-mindedness)

If we consider that every finite sequence of realised experiments
has probability greater than zero, that is:

P(X1 = e1, . . . ,Xn = en) > 0 for all n <∞ and (e1, . . . , en) ∈ X n,
(2)

then we are respecting what we call the open-mindedness
condition.

Loosely speaking: any finite sequence of realised experiments is
considered possible.
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From priors to predictions: some history

Laplace: extensive use of this approach (with uniform priors).
His justification is nowadays called principle of insufficient
reason, first proposed by Bernoulli (1713). Another modern
name is Bayes-Laplace postulate.
Corollary of such a prior: Laplace’s rule of succession, the
most criticized predictive probability on philosophical and
mathematical grounds.

Edgeworth (1884): one could use other priors than the
uniform, every time experience points to them.

G. F. Hardy (1889): probably the first to propose the beta
prior for the binomial problem.
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From priors to predictions: some history

In principle, one could use any possible distribution as a prior. The
obvious and most important question then is: how to choose a
prior?

Mathematical convenience, leading to conjugate priors,
disseminated specially by Raiffa and Schlaifer (1961) and
justified (for the exponential family) on mathematical grounds
by Diaconis and Ylvisaker (1979).

MCMC era: the question received a lot of attention once
more.
Two main approaches: subjectivists (prior must reflect the
personal opinion of experts, i.e. elicitation) “objectivists”
(prior satisfies some structural criterion; reference
priors—Bernardo (1979)— maximum entropy—Jaynes
(2003)—invariance to reparametrisations—Jeffreys (1961)).
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From predictions to priors

De Finetti (1937): parameters—on which the priors are
defined—have no real operational meaning. Then, to properly
justify the use of a specific prior, one should derive it by imposing
properties on the predictive inference rule it produces. Did Bayes
try this? Stigler (1982).

Another requirement: coherence. If a set of probability
assessments is coherent, they satisfy the usual axioms of
probability calculus, including finite, but not countable, additivity.
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From predictions to priors: exchangeability

De Finetti (1937) introduced exchangeability: an infinite sequence
of random quantities is considered exchangeable if for every finite
subsequence, all permutations are equally probable.

Key result: for (potentially) infinite sequences of binary random
quantities considered to be exchangeable, there is a random
quantity Θ, that assumes values in [0, 1], with unique distribution
function Π(θ) such that:

P(Sn = k) =

∫ 1

0

(
n

k

)
θk(1− θ)n−kdΠ(θ) (3)

where Sn = X1 + . . .+ Xn, for every n and k , n ∈ N and k ≤ n.
This is the so-called de Finetti’s Representation Theorem.
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From predictions to priors

Theorem 3 (De Finetti representation theorem: dFRT)

If we respect the open-mindedness condition, a coherent and
exchangeable predictive inference rule corresponds uniquely to a
distribution function on the parameter space (prior) trough the
multinomial likelihood and Bayes’s theorem.

de Finetti (1928): the uniform distribution on the counts of n
trials, P(Sn = k) = 1/(n + 1) for k = 0, . . . , n, is implied only by
the uniform distribution on [0, 1];

Polya urn scheme: derived only by the Dirichlet prior.
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From predictions to priors: sufficientness

Justify specific priors by imposing principles on the predictive
inference rule: W. E. Johnson (1932) introduced the sufficientness
postulate.

Definition 4 (Sufficientness postulate)

Let RX be a coherent predictive inference rule for random
quantities assuming values in a finite category set X . Johnson’s
sufficientness postulate assumes that:

P(Xn+1 = j |X1 = e1, . . . ,Xn = en) = fj(nj , n), (4)

where nj is the number of times the outcome j was observed.
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From predictions to priors

If |X | > 2, any coherent predictive inference rule that satisfies
Eq. (4) is linear in nj

P(Xn+1 = j |X1 = e1, . . . ,Xn = en) = aj(n) + b(n)nj . (5)

Accepting open-mindedness + exchangeability: dFRT implies that
the likelihood is multinomial and, thanks to the linearity of the
predictive inference rule, the prior on the parameter space should
be Dirichlet or, if the random quantities are considered
independent, a degenerate distribution; Zabell (2005).
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From predictions to priors: learning from experience

Independent case is not appealing when it is believed that past
provides information about future experiments of the same kind.

Definition 5 (Learning from experience)

We say that a predictive inference rule allows a subject to learn
from experience if observed data provides him with relevant
information about future experiments.

From a practical point of view, it is a useful property, which is why
we suggest to impose it on predictive inference rules.
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From predictions to priors

Since learning from experience implies that the experiments cannot
be (probabilistically) independent, the reasoning above leads to the
following result.

Proposition 6 (Johnson & Zabell)

If a subject accepts the open-mindedness condition (Definition 2)
and has a coherent exchangeable predictive inference rule RX , with
|X | > 2, that satisfies Johnson’s sufficientness postulate
(Definition 4) and allows him to learn from experience (Definition
5), his prior on the parameter space is a Dirichlet.
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From inference systems to a family of priors

Due to dFRT: to solve Bayes’s problem, just pick a prior.

But first, partition the possibility space, set that contains all
possible outcomes of the experiment one could envision.

Partitioning this space corresponds to choose a sample space for
the experiment or, choosing the labels according to which the
outcomes will be classified.

But ... such a partition can have a major influence on the resulting
inferences.
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Example

Disease affecting females (F ) and males (M).

Treatment may cure (C ) or not cure (C ) it.

Obvious sample space: X = {CM,CF ,CM,CF}.

The probabilities of the elements of X are designated by
θ = (θ1, . . . , θ4), which takes values in the standard 3-simplex.

Two physicians provide their prior opinion about θ as a Dirichlet:
α = (9, 1, 1, 1) and β = (1, 1, 1, 9).
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Example

Third researcher: study tested the effect of the treatment on eight
people affected by the disease, being three men and one woman
cured and three men and one woman not cured. We denote this
data set by D = (3, 1, 3, 1).

Table 1 provides immediate (one step ahead) predictions for the
next patient.

Three different priors: Dir(α), Dir(β) and a mixture that assigns
equal weight to both.
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Example

CM CF CM CF C C

Dir(α) 3/5 1/10 1/5 1/10 7/10 3/10

Dir(β) 1/5 1/10 1/5 1/2 3/10 7/10

1/2(Dir(α) + Dir(β)) 37/72 1/8 5/24 11/72 23/36 13/36

Table 1: Immediate predictions using the original data and priors
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Example

New situation: the object of interest is the probability of the next
patient being cured or not.

New sample space: Y = {C ,C} (pool the old categories).
New data: D ′ = (4, 4).
New priors: Dir(α′), α′ = (10, 2), and Dir(β′), β′ = (2, 10), and
the mixture with equal weight to both.

C C

Dir(α′) 7/10 3/10

Dir(β′) 3/10 7/10

1/2(Dir(α′) + Dir(β′)) 1/2 1/2

Table 2: Immediate predictions using the pooled data and priors
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Inference systems

A predictive inference rule for some partition of the possibility
space is not a stand-alone inference tool, but part of an inference
system.

Definition 7 (Inference system)

An inference system ΦΩ is a map from the set of all finite
partitions of some possibility space Ω to a set of predictive
inference rules. For every possible finite partition X of Ω or,
equivalently, every finite sample space X , it provides a
corresponding predictive inference rule RX .
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Inference systems

We consider only coherent, open-minded and exchangeable
inference systems.

Due to dFRT: inference system ↔ map from finite partitions to
priors.

Therefore, for every finite partition X of the possibility space Ω,
the inference system provides us a corresponding prior.
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Inference systems: consistency

Definition 8 (Consistency)

An inference system ΦΩ is consistent if for any finite partition X of
the possibility space Ω, and any finite refinement or coarsening Y
of X , the prior beliefs about any proposition on a finite number of
future experiments, as given by RX and RY , are related through
marginalisation.

Consistent inference systems: due to uniqueness guaranteed by
dFRT, priors that correspond to X and Y will be related through
marginalisation.
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Partition invariance

Requiring consistency from an inference system does not imply that
inferences are invariant to how you partition the possibility space.

It only requires this invariance for inferences made prior to
observing any data. Your posterior beliefs are still allowed to
depend on the chosen partition.

If posterior beliefs are invariant as well, the inference system is
said to satisfy the partition invariance principle.
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Partition invariance

Definition 9 (Partition invariance)

An inference system ΦΩ is partition invariant if for any finite
partition X of the possibility space Ω, any finite refinement or
coarsening Y of X , and any finite data set that is detailed enough
to allow for the data to be labelled according to both partition X
and Y, the resulting posterior beliefs about any proposition on any
finite number of future experiments, as given by RX and RY , are
related through marginalisation.
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Partition invariance

Predictive inferences made by a partition invariant inference system
do not depend on how one chooses to partition the possibility
space, thereby avoiding situations such as the one described in the
example.

Note that for a partition invariant inference system, due to the
uniqueness guaranteed by dFRT, the posteriors that correspond to
X and Y will also be related through marginalisation.
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Other approaches

Walley (1996): representation invariance principle. Like
partition invariance, it requires that inferences should not
depend on the sample space that is used.

Böge and Möcks (1986): learn-merge invariance principle, also
very similar, and used it to characterise Dirichlet priors. The
main difference is that they apply the principle to a single
inference rule on a single sample space and consider only
mergers, and no refinements.
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Partition invariance

Proposition 10

If an inference system ΦΩ that satisfies the partition invariance
principle (Definition 9), then each of its inference rules RX satisfies
Johnson’s sufficientness postulate (Definition 4).

By combining this result with Proposition 6, we obtain the
following intuitive characterisation of the Dirichlet distribution.

Marcio Diniz, Jasper De Bock and Arthur Van Camp Characterising Dirichlet Priors



Main result

Theorem 11 (Characterisation of Dirchlet priors)

Consider any inference system ΦΩ, with |Ω| > 2, that allows a
subject to learn from experience (Definition 5) and satisfies the
partition invariance principle (Definition 9). Then for any finite
partition X of Ω, including the binary ones, the corresponding
inference rule RX is derived from a prior on the parameter space
that is Dirichlet.
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Concluding remarks

Our contribution shows that if one whishes to use a predictive
inference rule that:

1 reflects a judgement of exchangeability;

2 allows learning from experience;

3 is open-minded; and

4 is part of an inference system that satisfies the partition
invariance principle

then the corresponding prior should be a Dirichlet.
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Concluding remarks

This is “certainly a more principled approach to the problem of
assigning a prior, in stark contrast to assuming the prior is Dirichlet
purely for reasons of mathematical convenience” —Zabell (2009).

The partition invariance principle is desirable in several applications
of the multinomial Bayes’s problem.

However, we remark, as Johnson (1932), that it is the researcher’s
business to assess if the principles here proposed are reasonable.
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