

Matthias D'Hondt¹, Chien-Yu Peng², Ralf Hoffmann³ and Bart De Spiegeleer^{1,*}

¹ DruQuaR (Drug Quality & Registration) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium. <u>*bart.despiegeleer@ugent.be</u> (Our Ref.: 2014-359b)

² Institute of Statistical Science, Academia Sinica, Academia Road 128, 11529 Taipei, Taiwan.

UNIVERSITEIT

³ Center for Biotechnology and Biomedicine, Institute for Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany.

INTRODUCTION

Biologically active peptides Therapeutics, *e.g.* oncology (buserelin)

1. High temperature exposure ←OBJECTIVE

2. Mechanical shear stress

3. Polymer/matrix influence

pGlu-His-Trp-Ser-Tyr-D-Ser(tBu)-Leu-Arg-Pro-NHEt (mono acetate form)

EXPERIMENTAL

Stability indicating UPLC method:

DruQuaR

Acquity BEH300 C18 1.7 μ m (2.1 ×100 mm) MF A: 95/5 H₂O/ACN + formic acid MF B: 5/95 H₂O/ACN + formic acid

1.5 min isocratic hold at 100% Alinear gradient from 0 to 21% B in 9.5 min7 min isocratic hold

Dry heat conditions

(°C) T	150	157.5	165	172.5	180
Time (t)	40	25	15	10	10
	80	50	30	20	20
(min)	120	75	45	30	30
	160	100	60	40	40

Detection

DAD-UV (kinetics via normalized areas)
MS/MS (degradant identification)

RESULTS and DISCUSSION

Kinetic data evaluation

•Statistical evaluation of 17 solid-state kinetic models:

- \checkmark Nucleation (7)
- ✓ Geometrical contraction (2)

✓ Diffusion (4)

✓ Reaction-order (4)

•Extrapolation to HME-related conditions

Kinetic data evaluation per temperature Degradant identification Ginstling-Brounshtein (Diffusion model): minimal AIC values 0.16- $1 - (2\alpha/3) - (1 - \alpha)^{2/3} = k \times t$ 0.14-203.84 186.97 α =fraction degraded 0.12 5 degradation constant k \Leftrightarrow temperature T 0.10--10⁵/(8.314xT) **P** 0.08 -8,0 -28 -27 -29 0.06 $y = 1.1311x^3 + 92.52x^2 + 2522.4x + 22911$ -9,0 $R^2 = 0.9946$ 17 18 19 0.04ln (k) 12 13 15 0.02--10,0 89 10 11 5 6 0.00 -11,0 0.00 10.00 12.00 2.00 14.00 6.00 8.00 4.00Minutes -12,0 Solid Molten **Degradation mechanism** pGlu-His-Trp-NH₂ * **Predicted degradation at HME-related conditions** pGlu-His-Trp-Ser-Tyr-NH₂ * β -elimination + fragmentation pyruvoyl-Tyr-Ser(tBu)-Leu-Arg-Pro-NH-Et Polynomial regr. Linear regr. solid state pGlu-His-Trp *

5 min 100°C	<0.01%	0.10%	Backbone hydrolysis	Tyr-Ser(tBu)-Leu-Arg-Pro-NH-Et * Ala-Tyr-Ser(tBu)-Leu-Arg-Pro-NH-Et *				
5 min 125℃	<0.01%	1.33%	Isomerisation*	pGlu-His-Trp-Ser-Tyr-Ser(tBu)-Leu-Arg-Pro-NH-Et				
CONCLUSIONS								
(1)Kinetics: Ginstling-Brounshtein degradation model: HME			On-going: (1) Manufacturing HME implant (2) Characterization, incl. discolution					
(2) <u>Degradan</u>	nt profiling:	 β-elimination Backbone hydrolysis Isomerisation 	(2) <u>Characterisation, Incl. dissolution</u> (3) <u>Stability</u> (4) <u>Pharmacokinetics <i>in-vivo</i>: (mice subdermal)</u>					
REFERENCES								
I. D'Hondt et al. Dry heat forced degradation of buserelin peptide: kinetics and degradant profiling, International Journal of Pharmaceutics, 2014, 467, 48-59. his research was funded by PhD grants of 'Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)' (No. 101529 (MD))								