
3177

Proceedings of the XVI ECSMGE
Geotechnical Engineering for Infrastructure and Development
ISBN 978-0-7277-6067-8

© The authors and ICE Publishing: All rights reserved, 2015
doi:10.1680/ecsmge.60678

wave velocities with different transmission direc-
tions. Each value of Vph was taken as the average of 
the two independent measurements (these were es-
sentially identical for the pp interpretation method at 
frequencies above 10 kHz, but showed some differ-
ences for the other three interpretation methods). 
Figure 11 shows that for the pp interpretation meth-
od, the measured values of Vph and Vpv were almost 
identical (within 1%). This indicates that, unlike the 
corresponding shear wave velocity measurements, 
measurements of compression wave velocity with 
bender/extender elements in a triaxial apparatus are 
unaffected by the different boundary conditions for 
horizontal and vertical transmission. 
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Figure 11 Measured compression wave velocity ratio. 

 
Inspection of Figure 11 shows that, whereas the pp 

interpretation method gives identical values of Vph  
and Vpv (within 1%), the other three interpretation 
methods give values of Vph and Vpv that are often 
very different, and with a ratio  Vph/Vpv that varies 
with frequency in an erratic fashion. 

4 CONCLUSIONS 

Four different interpretation procedures, involving 
both time and frequency domains, were examined for 
measuring travel times in bender/extender element 
tests on unsaturated samples of isotropically com-
pacted speswhite kaolin. For these particular tests, it 
was concluded that simple measurement of peak-to-
first-peak in the time domain gave the most reliable 
measurements of travel time for both shear and com-
pression waves. This conclusion was based on two 
considerations. Firstly, that this procedure, unlike the 

other three, gave shear and compression wave veloci-
ties that were almost independent of frequency (less 
than 2.5% variation) over an appropriate range of 
frequencies, corresponding to wavelengths less than 
25% of the transmission path length for shear waves 
and less than 70% of the transmission path length for 
compression waves. Secondly, that this procedure, 
unlike the other three, gave shear or compression 
wave velocities in these isotropic samples that were 
the same for different directions of wave transmis-
sion or wave polarisation, after excluding shear 
waves transmitted in the vertical direction, where the 
measured wave velocity was affected by a difference 
in boundary conditions.     

REFERENCES 

Airey, D. & Mohsin, K. M., 2013. Evaluation of shear wave veloc-
ity from bender elements using cross-correlation. Geotechnical 
Testing Journal, 36(4):1-9. 
Al-Sharrad, M.A. 2013. Evolving anisotropy in unsaturated soils: 
experimental investigation and constitutive modeling. PhD thesis, 
University of Glasgow, UK. 
Bringoli, E.G.M., Gotti M., & StokoeII, H., 1996. Measurement of 
shear waves in laboratory specimens by means of piezoelectric 
transducers. Geotechnical Testing Journal, 19(4):384–397. 
Greening, P. D. & Nash, D. F. T., 2004. Frequency domain deter-
mination of G0 using bender elements. Geotechnical Testing Jour-
nal, 27(3): 288–294. 
Leong, E.C., Yeo, S.H. & Rahardjo, H. 2005. Measuring shear 
wave velocity using bender elements. Geotechnical Testing Jour-
nal, 28(5):488-498. 
Lings M. L. & Greening, P. D. 2001. A novel bender/extender el-
ement for testing. Geotechnique, 51(8):713-717 
Love, A. E. H. (1927). A treatise on the mathematical theory of 
elasticity. 4th edn. Cambridge: Cambridge University Press. 
Pennington, D.S., Nash, D.F.T., & Lings, M.L. 2001. Horizontally 
mounted bender elements for measuring anisotropic shear moduli 
in triaxial clay specimens. Geotechnical Testing Journal. 24(2): 
133-144. 
Rees S., Le Compte A., & Snelling K., 2013. A new tool for the 
automated travel time analyses of bender element tests. Proceed-
ings, 18th ICSMGE, Paris. (Eds: Delage, P., Desrues, J., Frank, R., 
Puech, A., Schlosser, F.) 2843-2846. Presses des Ponts, Paris. 
Viggiani, G. & Atkinson, J.H., 1995. Interpretation of bender ele-
ment tests. Geotechnique, 45(1):149–154. 
Yamashita S., Kawaguchi T., Nakata Y., Mikami T., Fujiwara T. 
& Shibuya S. 2009.  Interpretation of international parallel test on 
the measurement of Gmax using bender elements. Soils and Foun-
dations 49(4): 631-650.  

3177

Proceedings of the XVI ECSMGE
Geotechnical Engineering for Infrastructure and Development
ISBN 978-0-7277-6067-8

© The authors and ICE Publishing: All rights reserved, 2015
doi:10.1680/ecsmge.60678

wave velocities with different transmission direc-
tions. Each value of Vph was taken as the average of 
the two independent measurements (these were es-
sentially identical for the pp interpretation method at 
frequencies above 10 kHz, but showed some differ-
ences for the other three interpretation methods). 
Figure 11 shows that for the pp interpretation meth-
od, the measured values of Vph and Vpv were almost 
identical (within 1%). This indicates that, unlike the 
corresponding shear wave velocity measurements, 
measurements of compression wave velocity with 
bender/extender elements in a triaxial apparatus are 
unaffected by the different boundary conditions for 
horizontal and vertical transmission. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35

V
ph

/V
pv

Frequency (kHz)

pp
cc
fcc
fd

 
Figure 11 Measured compression wave velocity ratio. 

 
Inspection of Figure 11 shows that, whereas the pp 

interpretation method gives identical values of Vph  
and Vpv (within 1%), the other three interpretation 
methods give values of Vph and Vpv that are often 
very different, and with a ratio  Vph/Vpv that varies 
with frequency in an erratic fashion. 

4 CONCLUSIONS 

Four different interpretation procedures, involving 
both time and frequency domains, were examined for 
measuring travel times in bender/extender element 
tests on unsaturated samples of isotropically com-
pacted speswhite kaolin. For these particular tests, it 
was concluded that simple measurement of peak-to-
first-peak in the time domain gave the most reliable 
measurements of travel time for both shear and com-
pression waves. This conclusion was based on two 
considerations. Firstly, that this procedure, unlike the 

other three, gave shear and compression wave veloci-
ties that were almost independent of frequency (less 
than 2.5% variation) over an appropriate range of 
frequencies, corresponding to wavelengths less than 
25% of the transmission path length for shear waves 
and less than 70% of the transmission path length for 
compression waves. Secondly, that this procedure, 
unlike the other three, gave shear or compression 
wave velocities in these isotropic samples that were 
the same for different directions of wave transmis-
sion or wave polarisation, after excluding shear 
waves transmitted in the vertical direction, where the 
measured wave velocity was affected by a difference 
in boundary conditions.     

REFERENCES 

Airey, D. & Mohsin, K. M., 2013. Evaluation of shear wave veloc-
ity from bender elements using cross-correlation. Geotechnical 
Testing Journal, 36(4):1-9. 
Al-Sharrad, M.A. 2013. Evolving anisotropy in unsaturated soils: 
experimental investigation and constitutive modeling. PhD thesis, 
University of Glasgow, UK. 
Bringoli, E.G.M., Gotti M., & StokoeII, H., 1996. Measurement of 
shear waves in laboratory specimens by means of piezoelectric 
transducers. Geotechnical Testing Journal, 19(4):384–397. 
Greening, P. D. & Nash, D. F. T., 2004. Frequency domain deter-
mination of G0 using bender elements. Geotechnical Testing Jour-
nal, 27(3): 288–294. 
Leong, E.C., Yeo, S.H. & Rahardjo, H. 2005. Measuring shear 
wave velocity using bender elements. Geotechnical Testing Jour-
nal, 28(5):488-498. 
Lings M. L. & Greening, P. D. 2001. A novel bender/extender el-
ement for testing. Geotechnique, 51(8):713-717 
Love, A. E. H. (1927). A treatise on the mathematical theory of 
elasticity. 4th edn. Cambridge: Cambridge University Press. 
Pennington, D.S., Nash, D.F.T., & Lings, M.L. 2001. Horizontally 
mounted bender elements for measuring anisotropic shear moduli 
in triaxial clay specimens. Geotechnical Testing Journal. 24(2): 
133-144. 
Rees S., Le Compte A., & Snelling K., 2013. A new tool for the 
automated travel time analyses of bender element tests. Proceed-
ings, 18th ICSMGE, Paris. (Eds: Delage, P., Desrues, J., Frank, R., 
Puech, A., Schlosser, F.) 2843-2846. Presses des Ponts, Paris. 
Viggiani, G. & Atkinson, J.H., 1995. Interpretation of bender ele-
ment tests. Geotechnique, 45(1):149–154. 
Yamashita S., Kawaguchi T., Nakata Y., Mikami T., Fujiwara T. 
& Shibuya S. 2009.  Interpretation of international parallel test on 
the measurement of Gmax using bender elements. Soils and Foun-
dations 49(4): 631-650.  

Effects of grain size distribution on the initial small 

Effets de la Distribution des Grains sur la Module de 

Cisaillement Initial du Sable Calcaire 

P. H. Ha Giang
*1

, P. Van Impe
2

 , W.F. Van Impe
2

, P. Menge
3

, and W. Haegeman
1

1 

Ghent University, Ghent, Belgium 

2 

Ghent University, AGE Advanced Geotechnics Engineering Bvba, Ghent, Belgium 

3  

Dredging International, Zwijndrecht, Belgium 

*

 Corresponding Author 

ABSTRACT: The soil’s small strain shear modulus, Gmax or G0, is applied in dynamic behavior analyses and is correlated to other soil 

properties (density and void ratio) for predicting soil dynamic behavior under seismic loadings such as earthquakes, machinery or traffic 

vibrations. However, for calcareous sands, selecting representative samples for the field conditions is difficult; therefore, almost all 

measured soil parameters (post-seismic properties) do not reflect exactly the soil state before seismic loading. In some cases of dynamic 

loading, a change in grain size distribution (GSD) of soils, especially for calcareous sands might occur. Moreover, many of these sand types

behave differently from silica sands owing to their mineralogy, particle characterization, soil skeleton, and the continuous changing of 

particle size. For this reason, a series of isotropic consolidation tests in ranges of confining pressure from 25 to 300 kPa as well as bender 

element measurements on a calcareous sand and on a reference silica sand were performed in this study. The effects of differences in 

gradation and in the type of material on the soil’s small strain shear modulus, Gmax, are discussed. 

RÉSUMÉ: La module de cisaillement initial, Gmax ou G0, est appliquée dans des analyses du comportement dynamique du sol sous 

sollicitations sismiques tels que les tremblements de terre, des machines ou des vibrations de la circulation et est corrélée à d'autres

propriétés du sol (densité et indice des vides). Pourtant, pour les sables calcaires, la sélection des échantillons représentatifs des conditions

sur le terrain est difficile; par conséquent, la quasi-totalité des paramètres mesurés (post-sismique propriétés) ne reflète pas exactement

l'état du sol avant le chargement sismique. Dans certains cas de chargement dynamique, un changement dans la répartition de la taille des 

grains, en particulier pour les sables calcaires, peuvent se produire. En outre, beaucoup de ces types de sable se comportent différemment 

des sables siliceux en raison de leur minéralogie, la caractérisation des particules, la squelette du sol et l'évolution continue de la taille des 

particules. Dans cette étude une série d'essais de consolidation isotrope dans des gammes de pression de confinement de 25 à 300 kPa, ainsi 

que des mesures de propagation d’ondes de faible amplitude sur un sable calcaire et un sable de silice de référence ont été effectuées. Les

effets des différences de gradation et du type de matériau à la module de cisaillement, Gmax, sont discutés.

1. INTRODUCTION 

The shear modulus at small strain, Gmax, which is 

typically 10
–4

 or less, is one of the basic soil 

parameters. It is determined from the shear wave 

velocity (Vs), which is measured directly in-situ or 

in the lab ( = G	/ρ). In the lab, it is 

conducted by wave propagation velocity 

measurements or the very precise laboratory 

measurement of stress and strain in soil samples 

(Towhata 2008). Beside the resonant column 

method, the bender element method developed by 

Shirley & Hampton in 1978 (cited in (Maheswari 

et al. 2008) is one of the laboratory methods to 

obtain Gmax by measuring the velocity of the shear 

wave propagating through the sample. The 

strain shear modulus of calcareous sand 
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laboratory experiments indicate that the bender 

element measurements of Gmax are comparable to 

the corresponding resonant column measurements, 

with differences of less than 10% (Yang & Gu 

2013). This method has generated intensive studies 

from many researchers in the past (Bellotti et al. 

1996, Santamarina & Fratta 2005, Builes et al. 

2008).  

However, sampling undisturbed calcareous 

sands is difficult. Moreover, all measured soil 

parameters (post-seismic properties) do not reflect 

exactly the soil state before shaking. Indeed, after 

seismic loading or vibrating compaction there may 

be a change in grain size distribution (GSD) of 

soils, especially for calcareous sands. Based on the 

literature, various parameters affect the small strain 

shear modulus such as stress state, material 

characteristics including void ratio, particle size, 

particle shape, gradation, fabric, cementation, etc., 

and strain level (Bui et al. 2007). (Hyodo et al. 

(1996) investigated crushable sands, which have 

lower grain hardness, larger intra-granular 

porosity, a wider range of grain shapes, and more 

complex structural arrangements. He concluded 

that their mineralogy, particle shape, soil skeleton, 

and high void ratios contribute to their 

compressibility. In addition, a number of studies 

also showed that the compressibility of calcareous 

sands is greater than silica sands (Datta et al. 1982, 

Hyodo et al. 1996, Sandoval & Pando 2012). 

This study uses laboratory data obtained from 

reconstituted samples to predict the variation of 

Gmax for calcareous sands. A common empirical 

equation  for small strain shear modulus Gmax as a 

function of void ratio e and mean effective 

confining pressure p’, first proposed by Hardin & 

Richart (1963) (cited in Santos & Gomes Correia 

2000) is as follow:  

Gmax = A *F(e)* 


  

(1) 

where e is void ratio, the empirical void ratio 

function F(e) = B

proposed by Iwasaki & 

Tatsuoka (1977) (a = 2,17 and 2,79 for round and 

angular grained sands, respectively) or F(e) = e
-B

proposed by Lo-Presti (1998) (cited by (Santos & 

Gomes Correia 2000), p' is mean effective stress, 

pa is a reference pressure of 100 kPa (the 

atmospheric pressure), and A, B, and n are material 

constants.  

(Iwasaki & Tatsuoka (1977) concluded that 

shear moduli decrease with increasing Cu. 

However, they considered only the effects of Cu on 

the parameter B (proposed by Iwasaki & Tatsuoka 

(1977)) of the void ratio function used in the 

equation (1). B increases when Cu decreases. In 

addition (Menq et al. 2003) showed that the 

exponent n of the confining pressure increases with 

increasing Cu.(Wichtmann & Triantafyllidis (2009) 

also investigated the influence of GSD curves on 

the small strain shear modulus Gmax of quartz sand. 

They confirmed an increase of the exponent n with 

increasing Cu and proposed a correlation between 

Cu and the material constants A, B, and n where 

the effects of particle characteristics as particle 

angularity on these parameters are not  mentioned 

yet.   

The objective of this study is to determine Gmax

by the equation (1) for calcareous and silica sands 

with different void ratios, densities, GSD under 

saturated condition so Gmax can be predicted for 

dynamic soil applications for these materials. 

2. EXPERIMENTAL PROGRAM 

A total number of 12 isotropic consolidation tests 

are considered in this study. The experiments are 

performed on four materials with three different 

gradations and are prepared at three initial relative 

densities (15%, 40%, 60%) and finally 

consolidated at confining pressures 25, 50, 75, 100, 

125, 150, 175, 200, 225, 250, 275, 300 kPa. 

Volume change is measured during testing and 

bender elements tests are excited by single 

sinusoidal pulse waves at each confining pressure.   

2.1. Test materials 

There are two original materials, Mol sand and 

Sarb sand, used in the experiments. Mol sand, a 

silica sand, is taken from a municipality located in 

the Belgian province of Antwerp; and Sarb sand, a 

calcareous sand, is obtained from an artificial 

island in Abu Dhabi, United Arab Emirates.  

The main purpose of this work is to find out the 

effects of different GSD on the initial shear 

modulus of calcareous sand; silica sand is taken for 

comparison. Sarb sand is crushed on a vibrating 

table following the ASTM D 4254–00 to have a 

different crushable material with finer GSD curve, 

afterward called VSarb sand. In the concept of this 

work, Sarb sand was also used to match the GSD 

of the silica sand by copying the GSD of Mol sand. 

SarbMol sand has the same shape, angularity as 

Sarb sand but the GSD of Mol sand. This is to see 

the effects on Gmax of differences in particle 

morphology, type of material and GSD. 

The physical properties of the studied sands, 

determined according to ASTM and Japanese 

Geotechnical Society standards, are summarized in  

Table 1 and the GSD curves are depicted in 

Figure 1. Sarb sand is separated into 13 grain size 

fractions with 12 grain size fractions bigger than 

63mm as shown in Figure 2. The tests are 

performed in the Geotechnical lab of Ghent 

University. According to ASTM D2487-10, the 

GSD curves indicate clearly that all materials are 

termed as sandy-grained soil. Sarb sand is the only 

well-graded sand, whereas VSarb, SarbMol and 

Mol sand are classified as poorly-graded sands.  

Table 1. Physical properties of the studied sands 

Physical Properties Mol Sarb VSarb SarbMol Standard 

Specific gravity, 

G
s

2.637 2,787 2,787 2,787 ASTM D 

854-06 

Mean grain size, 

D
50

(mm) 

0,167 0,73 0,425 0,167 ASTM D 

422-63  

Coefficient of 

uniformity, C
u 

= 

D
60

/D
10

1,44 3,46 5,429 1,44 ASTM D 

422-63  

Coefficient of 

gradation, C
c 

= 

(D
30

)

2

/(D
10

*D
60

) 

0,93 1,12 0,809 0.930 ASTM D 

422-63  

Max. void ratio, 

e
max

0,93 1,33 0,956 1,340 JIS A 1224 

Min. void ratio, 

e
min

0,581 0,903 0,508 0,843 JIS A 1224 

Max. dry density, 

r
d(max) 

(KN/m

3

) 

16,36 14,38 18,12 14,83 JIS A 1224 

Min. dry density, 

r
d(min)

 (KN/m

3

) 

13,40 11,73 13,97 11,68 JIS A 1224 

Figure 1. Grain size distribution curves of the studied materials

2.2. Test procedure

The triaxial samples, 50 mm in diameter and 90 

mm in height, are prepared in five layers by using 

moist tamping based on the under-compaction 

method developed by (Ladd 1978. However, 

instead of tamping on each layer, samples are hit 

by a plastic hammer at the sideways of the mount 

while the surface of each layer is being constrained 

by a solid plastic cylinder. This technique prevents 

the crushing of materials during sample 

preparation to get the target initial relative 

densities for the samples of 15%, 40% and 60%.  

The samples are saturated by first flushing 

carbon dioxide (CO2) to remove air. Subsequently 

deaired water is allowed to flow in the samples 

during 1 hour. After water flushing, the samples 

are loaded at 15 kPa cell pressure and 10 kPa back 

pressure. A differential pressure between cell 

pressure and back pressure is set to 5kPa and the 

saturation degree of the samples is checked by 

increasing the cell pressure and back pressure in 

three consecutive steps (30-25, 60-55, 105-100 

kPa). All samples are considered to be fully 

saturated when the Skempton pore pressure ratio 

equals 0,95. Each sample is consolidated for 20 

minutes until the volume change of the sample 

becomes stable, then bender element tests are 

performed at the target effective confining stresses 

of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 

275, 300 kPa. The change of void ratio of the 

samples at different effective confining pressure is 

measured using an external and local strain 

transducers and shown in Figure 3. In addition, 

measurements of the volume change are 

considered for validation only. Table 2 summarises 

the test series.  
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element measurements of Gmax are comparable to 

the corresponding resonant column measurements, 

with differences of less than 10% (Yang & Gu 

2013). This method has generated intensive studies 

from many researchers in the past (Bellotti et al. 

1996, Santamarina & Fratta 2005, Builes et al. 

2008).  

However, sampling undisturbed calcareous 

sands is difficult. Moreover, all measured soil 

parameters (post-seismic properties) do not reflect 

exactly the soil state before shaking. Indeed, after 

seismic loading or vibrating compaction there may 

be a change in grain size distribution (GSD) of 

soils, especially for calcareous sands. Based on the 

literature, various parameters affect the small strain 

shear modulus such as stress state, material 

characteristics including void ratio, particle size, 

particle shape, gradation, fabric, cementation, etc., 

and strain level (Bui et al. 2007). (Hyodo et al. 

(1996) investigated crushable sands, which have 

lower grain hardness, larger intra-granular 

porosity, a wider range of grain shapes, and more 

complex structural arrangements. He concluded 

that their mineralogy, particle shape, soil skeleton, 

and high void ratios contribute to their 

compressibility. In addition, a number of studies 

also showed that the compressibility of calcareous 

sands is greater than silica sands (Datta et al. 1982, 

Hyodo et al. 1996, Sandoval & Pando 2012). 

This study uses laboratory data obtained from 

reconstituted samples to predict the variation of 

Gmax for calcareous sands. A common empirical 

equation  for small strain shear modulus Gmax as a 

function of void ratio e and mean effective 

confining pressure p’, first proposed by Hardin & 

Richart (1963) (cited in Santos & Gomes Correia 

2000) is as follow:  

Gmax = A *F(e)* 


  

(1) 

where e is void ratio, the empirical void ratio 

function F(e) = B

proposed by Iwasaki & 

Tatsuoka (1977) (a = 2,17 and 2,79 for round and 

angular grained sands, respectively) or F(e) = e
-B

proposed by Lo-Presti (1998) (cited by (Santos & 

Gomes Correia 2000), p' is mean effective stress, 

pa is a reference pressure of 100 kPa (the 

atmospheric pressure), and A, B, and n are material 

constants.  

(Iwasaki & Tatsuoka (1977) concluded that 

shear moduli decrease with increasing Cu. 

However, they considered only the effects of Cu on 

the parameter B (proposed by Iwasaki & Tatsuoka 

(1977)) of the void ratio function used in the 

equation (1). B increases when Cu decreases. In 

addition (Menq et al. 2003) showed that the 

exponent n of the confining pressure increases with 

increasing Cu.(Wichtmann & Triantafyllidis (2009) 

also investigated the influence of GSD curves on 

the small strain shear modulus Gmax of quartz sand. 

They confirmed an increase of the exponent n with 

increasing Cu and proposed a correlation between 

Cu and the material constants A, B, and n where 

the effects of particle characteristics as particle 

angularity on these parameters are not  mentioned 

yet.   

The objective of this study is to determine Gmax

by the equation (1) for calcareous and silica sands 

with different void ratios, densities, GSD under 

saturated condition so Gmax can be predicted for 

dynamic soil applications for these materials. 

2. EXPERIMENTAL PROGRAM 

A total number of 12 isotropic consolidation tests 

are considered in this study. The experiments are 

performed on four materials with three different 

gradations and are prepared at three initial relative 

densities (15%, 40%, 60%) and finally 

consolidated at confining pressures 25, 50, 75, 100, 

125, 150, 175, 200, 225, 250, 275, 300 kPa. 

Volume change is measured during testing and 

bender elements tests are excited by single 

sinusoidal pulse waves at each confining pressure.   

2.1. Test materials 

There are two original materials, Mol sand and 

Sarb sand, used in the experiments. Mol sand, a 

silica sand, is taken from a municipality located in 

the Belgian province of Antwerp; and Sarb sand, a 

calcareous sand, is obtained from an artificial 

island in Abu Dhabi, United Arab Emirates.  

The main purpose of this work is to find out the 

effects of different GSD on the initial shear 

modulus of calcareous sand; silica sand is taken for 

comparison. Sarb sand is crushed on a vibrating 

table following the ASTM D 4254–00 to have a 

different crushable material with finer GSD curve, 

afterward called VSarb sand. In the concept of this 

work, Sarb sand was also used to match the GSD 

of the silica sand by copying the GSD of Mol sand. 

SarbMol sand has the same shape, angularity as 

Sarb sand but the GSD of Mol sand. This is to see 

the effects on Gmax of differences in particle 

morphology, type of material and GSD. 

The physical properties of the studied sands, 

determined according to ASTM and Japanese 

Geotechnical Society standards, are summarized in  

Table 1 and the GSD curves are depicted in 

Figure 1. Sarb sand is separated into 13 grain size 

fractions with 12 grain size fractions bigger than 

63mm as shown in Figure 2. The tests are 

performed in the Geotechnical lab of Ghent 

University. According to ASTM D2487-10, the 

GSD curves indicate clearly that all materials are 

termed as sandy-grained soil. Sarb sand is the only 

well-graded sand, whereas VSarb, SarbMol and 

Mol sand are classified as poorly-graded sands.  

Table 1. Physical properties of the studied sands 

Physical Properties Mol Sarb VSarb SarbMol Standard 

Specific gravity, 

G
s

2.637 2,787 2,787 2,787 ASTM D 

854-06 

Mean grain size, 

D
50

(mm) 

0,167 0,73 0,425 0,167 ASTM D 

422-63  

Coefficient of 

uniformity, C
u 

= 

D
60

/D
10

1,44 3,46 5,429 1,44 ASTM D 

422-63  

Coefficient of 

gradation, C
c 

= 

(D
30

)

2

/(D
10

*D
60

) 

0,93 1,12 0,809 0.930 ASTM D 

422-63  

Max. void ratio, 

e
max

0,93 1,33 0,956 1,340 JIS A 1224 

Min. void ratio, 

e
min

0,581 0,903 0,508 0,843 JIS A 1224 

Max. dry density, 

r
d(max) 

(KN/m

3

) 

16,36 14,38 18,12 14,83 JIS A 1224 

Min. dry density, 

r
d(min)

 (KN/m

3

) 

13,40 11,73 13,97 11,68 JIS A 1224 

Figure 1. Grain size distribution curves of the studied materials
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method developed by (Ladd 1978. However, 
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deaired water is allowed to flow in the samples 

during 1 hour. After water flushing, the samples 

are loaded at 15 kPa cell pressure and 10 kPa back 

pressure. A differential pressure between cell 

pressure and back pressure is set to 5kPa and the 

saturation degree of the samples is checked by 

increasing the cell pressure and back pressure in 

three consecutive steps (30-25, 60-55, 105-100 

kPa). All samples are considered to be fully 

saturated when the Skempton pore pressure ratio 

equals 0,95. Each sample is consolidated for 20 

minutes until the volume change of the sample 

becomes stable, then bender element tests are 

performed at the target effective confining stresses 

of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 

275, 300 kPa. The change of void ratio of the 

samples at different effective confining pressure is 

measured using an external and local strain 

transducers and shown in Figure 3. In addition, 

measurements of the volume change are 

considered for validation only. Table 2 summarises 

the test series.  

0

20

40

60

80

100

0,01 0,10 1,00 10,00

P
e
r
c
e
n
t
 f

i
n
e
r
 (

%
)

Grain size (mm)

VSARB

SARB

MOL

SARBMOL

Ha Giang et al.



Geotechnical Engineering for Infrastructure and Development

3180

Figure 2. Microscopic views of different grain sizes of the Sarb 

sand bigger than 63mm 

For the bender element test,  a single sinusoidal 

pulse wave (±2V at 10kHz) is generated by a 

Picoscope. The method of first arrival time is used 

to obtain the travel time from transmitter to 

receiver combined with a stacking techique used in 

the studies of Santamarina & Fratta 2005 and 

Brandenberg et al. 2008. In this technique, a 

prescribed number of output wave signals are 

recorded and averaged for determining the travel 

time. 

Table 2. Summary of the conducted isotropic consolidation 

tests with shear wave velocity measurement 

Test No. Name of test 
Initial relative 

density, Dr (%) 

Confining effective 

stress, σ'c (Kpa) 

1 Mol_Dr15 15 25 - 300 

2 Mol_ Dr40 40 25 - 300 

3 Mol_ Dr60 60 25 - 300 

4 Sarb_ Dr15 15 25 - 300 

5 Sarb_ Dr40 40 25 - 300 

6 Sarb_ Dr60 60 25 - 300 

7 VSarb_ Dr15 15 25 - 300 

8 VSarb_ Dr40 40 25 - 300 

9 VSarb_ Dr60 60 25 - 300 

10 SarbMol_ Dr15 15 25 - 300 

11 SarbMol_ Dr40 40 25 - 300 

12 SarbMol_ Dr60 60 25 - 300 

Figure 3. Void ratio of the samples versus effective confining 

stress. 

3. TEST RESULTS AND DISCUSSION  

Figure 4 and Figure 5 show the measured Gmax

versus the effective confining pressure p’ and 

versus void ratio e for all tested materials at 

different initial relative densities. It can be seen 

that Gmax increases with confining pressure and 

decreases with void ratio. The data of all tests are 

least-square fitted to estimate the material 

constants A, B (Lo presti), n listed in Table 3 so 

Gmax can be predicted by Eq. (1).  

Table 3, the values of the constants A, B, n for 

all sands were plotted versus the coefficient of 

uniformity Cu in Figure 6. This figure shows that 

the specimens having the same particles give an 

increase in A with increasing Cu (CuSarb = 3,46, 

CuSarbMol = 1,44). However, Vsarb shows a decrease 

in A compared to Sarb and SarbMol. It is possible 

to say that after crushing the angularity of the 

particles decreases and so A decreases.  

The value A of the two sands SarbMol and Mol 

with equal Cu increases with increasing angularity 

of the particles (SarbMol sand shows more angular 

particles than Mol sand). This effect is observed in 

specimens prepared at low and high relative 

densities. Besides the shape and angularity of the 

grains (Cho et al. 2006), the hardness of the 

particles can also be taken into account. This 

indicates that there is less dynamic stiffness in 
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silica sand (Mol sand) in comparison with 

calcareous sand.  

Figure 4. Increase of  Gmax with confining pressure p’

Figure 5. Decrease of Gmax with void ratio e at various effective 

confining stresses  

Table 3. Material constants  

Sand type A B n R² Cu Range of e 

Sarb 82,327 1,618 0,5 0,9883 3,46 0,903-1,33 

Vsarb 63,658 0,721 0,504 0,9938 5,249 0,508-0,956

SarbMol 73,587 1,443 0,448 0,994 1,44 0,843-1,340

Mol 49,767 1,23 0,413 0,9953 1,44 0,581-0,93 

The value of the exponent n varies between 

0.41 for silica sand (Mol sand) and 0,44 - 0.51 for 

calcareous sand (Figure 6c). These values are close 

to 0.5 as proposed by Hardin & Richart (1963) 

(cited in Iwasaki & Tatsuoka 1977) and are in 

good agreement with the values obtained by many 

other authors on different sands (Delfosse-Ribay et 

al. 2004, Hoque & Tatsuoka 2004, Santamarina & 

Cho 2004, Bui et al. 2007, Wichtmann & 

Triantafyllidis 2009). The trend of the parameter B 

is quite similar to A as shown in Figure 6b.  

(a) 

(b)

(c) 

Figure 6. Material constants A, B, and n in function of Cu for 

calcareous sands and Mol sand

Figure 7. Gmax of manipulated sands compared to the original 

Sarb sand

In order to visualize the effect of GSD on Gmax, 

the results are expressed in terms of the ratio of 

Gmax of the manipulated calcareous sands to Gmax

of the original calcareous sand, Gmax/Gmax original

(Figure 7). Since two manipulated sands (Vsarb, 

sarbMol) are considered this ratio varies between 

0,82 and 1,3. The shear modulus Gmax increases 

25% after crushing for the Vsarb sand (Cu=5,429) 

and decreases 18% for the SarbMol sand 
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Figure 2. Microscopic views of different grain sizes of the Sarb 

sand bigger than 63mm 

For the bender element test,  a single sinusoidal 

pulse wave (±2V at 10kHz) is generated by a 

Picoscope. The method of first arrival time is used 

to obtain the travel time from transmitter to 

receiver combined with a stacking techique used in 

the studies of Santamarina & Fratta 2005 and 

Brandenberg et al. 2008. In this technique, a 

prescribed number of output wave signals are 

recorded and averaged for determining the travel 

time. 

Table 2. Summary of the conducted isotropic consolidation 

tests with shear wave velocity measurement 

Test No. Name of test 
Initial relative 

density, Dr (%) 

Confining effective 

stress, σ'c (Kpa) 

1 Mol_Dr15 15 25 - 300 

2 Mol_ Dr40 40 25 - 300 

3 Mol_ Dr60 60 25 - 300 

4 Sarb_ Dr15 15 25 - 300 

5 Sarb_ Dr40 40 25 - 300 

6 Sarb_ Dr60 60 25 - 300 

7 VSarb_ Dr15 15 25 - 300 

8 VSarb_ Dr40 40 25 - 300 

9 VSarb_ Dr60 60 25 - 300 

10 SarbMol_ Dr15 15 25 - 300 

11 SarbMol_ Dr40 40 25 - 300 

12 SarbMol_ Dr60 60 25 - 300 

Figure 3. Void ratio of the samples versus effective confining 

stress. 

3. TEST RESULTS AND DISCUSSION  

Figure 4 and Figure 5 show the measured Gmax

versus the effective confining pressure p’ and 

versus void ratio e for all tested materials at 

different initial relative densities. It can be seen 

that Gmax increases with confining pressure and 

decreases with void ratio. The data of all tests are 

least-square fitted to estimate the material 

constants A, B (Lo presti), n listed in Table 3 so 

Gmax can be predicted by Eq. (1).  

Table 3, the values of the constants A, B, n for 

all sands were plotted versus the coefficient of 

uniformity Cu in Figure 6. This figure shows that 

the specimens having the same particles give an 

increase in A with increasing Cu (CuSarb = 3,46, 

CuSarbMol = 1,44). However, Vsarb shows a decrease 

in A compared to Sarb and SarbMol. It is possible 

to say that after crushing the angularity of the 

particles decreases and so A decreases.  

The value A of the two sands SarbMol and Mol 

with equal Cu increases with increasing angularity 

of the particles (SarbMol sand shows more angular 

particles than Mol sand). This effect is observed in 

specimens prepared at low and high relative 

densities. Besides the shape and angularity of the 

grains (Cho et al. 2006), the hardness of the 

particles can also be taken into account. This 

indicates that there is less dynamic stiffness in 
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Figure 4. Increase of  Gmax with confining pressure p’

Figure 5. Decrease of Gmax with void ratio e at various effective 

confining stresses  

Table 3. Material constants  

Sand type A B n R² Cu Range of e 

Sarb 82,327 1,618 0,5 0,9883 3,46 0,903-1,33 

Vsarb 63,658 0,721 0,504 0,9938 5,249 0,508-0,956

SarbMol 73,587 1,443 0,448 0,994 1,44 0,843-1,340

Mol 49,767 1,23 0,413 0,9953 1,44 0,581-0,93 

The value of the exponent n varies between 

0.41 for silica sand (Mol sand) and 0,44 - 0.51 for 

calcareous sand (Figure 6c). These values are close 

to 0.5 as proposed by Hardin & Richart (1963) 

(cited in Iwasaki & Tatsuoka 1977) and are in 

good agreement with the values obtained by many 

other authors on different sands (Delfosse-Ribay et 

al. 2004, Hoque & Tatsuoka 2004, Santamarina & 

Cho 2004, Bui et al. 2007, Wichtmann & 

Triantafyllidis 2009). The trend of the parameter B 

is quite similar to A as shown in Figure 6b.  

(a) 

(b)

(c) 

Figure 6. Material constants A, B, and n in function of Cu for 

calcareous sands and Mol sand

Figure 7. Gmax of manipulated sands compared to the original 

Sarb sand

In order to visualize the effect of GSD on Gmax, 

the results are expressed in terms of the ratio of 

Gmax of the manipulated calcareous sands to Gmax

of the original calcareous sand, Gmax/Gmax original

(Figure 7). Since two manipulated sands (Vsarb, 

sarbMol) are considered this ratio varies between 

0,82 and 1,3. The shear modulus Gmax increases 

25% after crushing for the Vsarb sand (Cu=5,429) 

and decreases 18% for the SarbMol sand 
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(Cu=1,44). These differences in Gmax are obviously 

due to the differences in GSD and void ratio 

expressed by the constants A and B. The influence 

of the void ratio is confirmed by Iwasaki & 

Tatsuoka 1977). Hardin & Drnevich (1972b) (cited 

in Bui et al. 2007) stated that the particle 

characteristics only change the void ratio and 

classified particle characteristics as relatively 

unimportant parameters for the assessment of the 

shear modulus. However, it is shown here, by 

comparison of the results for the Sarb, VSarb and 

SarbMol sands that particle characteristics do have 

an influence on Gmax.

4. CONCLUSIONS

Based on the test results obtained, the following 

observations are made: 

Shear modulus Gmax cannot be predicted via 

mean effective stress p’ alone. Gmax increases with 

confining pressure and decreases with void ratio. 

Particle shape and angularity of grains affect 

the shear modulus Gmax when comparing silica and 

calcareous sands. For constant Cu the shear 

modulus of the calcareous sands is higher than that 

of silica sand.  

GSD is an important parameter to evaluate Gmax

of soils. Crushable sands often have well graded 

classification while non-crushable sands like silica 

sand are poorly graded. Specimens having the 

same particles give an increase in A with 

increasing Cu. 

Due to the limited test series, correlations of the 

material constants with Cu to predict Gmax could 

not be developed in the current study.  
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ABSTRACT The rheological properties of excavation-support fluids can influence their performance and that of the resulting foundation 
elements in many different ways. Although much of work has been done to characterise bentonite fluids, relatively little attention has been 
paid to their polymer fluid counterparts which are becoming increasingly popular with foundation contractors. This paper presents the 
results of an experimental investigation of the yield stress and time-dependent behaviour of partially hydrolysed polyacrylamide (PHPA)
polymer fluids using an advanced rheometer. It is found from a series of stress-ramp tests that the interpreted yield stress of the fluids is a
function of the chosen sweep time which controls the dynamic processes. However, the yield values are so small that they may be assumed 
to be zero for most practical purposes. From a step-shear-rate test, the polymer fluid is found to be effectively non-thixotropic.

RÉSUMÉ  Les propriétés rhéologiques des fluides de forage peuvent influencer de plusieurs façons leur comportement.  Bien qu’il existe 
un corps de recherche étendu sur les boues de bentonite, nous avons peu de renseignements sur les fluides à base de polymères qui sont de 
plus en plus utilisés par les ingénieurs de forage.  Dans ce communiqué, nous présentons les résultats de recherches conduites à l’aide d’un 
rhéomètre adapté pour établir le comportement des fluides à base de polymères polyacrylamides partiellement hydrolysés (PHPA) en fonc-
tion du temps.  Les résultats d’une série de tests utilisant des rampes de contrainte montrent que les contraintes seuils d’écoulement de ces 
fluides varient en fonction de la vitesse de déformation qui contrôle ces procédés. Cependant les valeurs de ces contraintes seuils 
d’écoulement sont si minimales qu’elles peuvent être ignorées.  Nous démontrons également que d’après des tests sur les taux de cisaille-
ment, ces fluides à base de polymères ne sont pas thixotropes.

1 INTRODUCTION

Support fluids are commonly used to stabilise exca-
vations for piles and diaphragm walls prior to the 
placement of structural concrete.  Pioneering work by 
Veder (1953) led to the worldwide use of bentonite 
clay based fluids. However, for the past 25 years, so-
lutions of synthetic polymers have been successfully 
used on piling projects in many different countries.
An introduction to the use of polymer fluids in civil 
engineering can be found in Lam (2011) and Jefferis 
& Lam (2013).

To better understand the flow behaviour of these 
fluids in soils and in particular the potential for the 
bulk loss of fluid to coarse soils, an experimental in-

vestigation was undertaken into the possible yield 
stress and thixotropic properties of solutions of a
polymer. To set the experimental information in con-
text, an introduction to the relevant properties of ben-
tonite fluids and a brief discussion of the engineering 
implications is given below.

1.1 Properties of bentonite fluids

Bentonite fluids are used for excavation support part-
ly because of their non-Newtonian flow behaviour.
At rest they behave as weak solids that flow only 
when the applied stress exceeds a threshold value. In 
rheology, this type of flow behaviour is described as 
viscoplastic and may be represented by the Bingham 
plastic model:


