

innovatie - ontwikkeling - masterproef

Exergy based Sustainability Assessment of Batch versus Continuous pharmaceutical Tablet Production

Finite supply of fossil resources, resource efficiency, carbon footprint. All of them are *megatrends* within international production environments. But how to **measure environmental sustainability**? What is the **environmental impact** of your **Supply Chain**?

Results:

34%, 26% and 15% resource consumption reduction at process (α), plant (β) and industrial (γ) level respectively by implementing continuous manufacturing line
Resource footprint: 65% fossil resources, 15%

Energy &

Environment

Innovative production technologies require cutting edge resource consumption assessment methods, e.g. based on thermodynamics.

- \rightarrow **Exergy Analysis**^{*} (EA) at process (α) and plant (β) level
- → Exergetic Life Cycle Analysis (ELCA) at overall industrial level (γ)
 - *Exergy: quantity and quality of both energetic and material resources. One single resource-based indicator → pro-active
- Continuous process optimisation through analysis of thermodynamic imperfections

water resources, 15% land occupation and biomass production, 5% renewable resources

Resource-based environmental sustainability assessment and LCA enables quantifying and eventually controlling your environmental impact through process improvements. In contrast to traditionally emission-based studies, a direct correlation between avoided resource consumption and cost reduction is likely to be present. The obtained eco indicators are a

powerful instrument in stakeholder communications.

ir. Wouter De Soete, Promotor Prof. dr. ir. Jo Dewulf, Research group ENVOC, Ghent University Co-Promotor: dr. Philippe Cappuyns, Johnson & Johnson PRD, Janssen Pharmaceutica NV

Batch: 0.14 MJ _{ex} Continuous: 0.12 Natural resources	CEENE Batch: 0.0 MJ _{ex} CEENE Continuou S Natural re	ENE Batch: 0.0042 MJ _{ex} CEENE Continuous: 0.0042 MJ _{ex} CEENE Natural resources		Batch: 0.13 MJ _{ex} CEENE Continuous: 0.13 MJ _{ex} CEENE Natural resources	
UTILITIES AND AUXILIARY SUBSTANCES Batch: 0.063 MJ _{ex} Continuous: 0.04	UTILITIES AND AUXILIARY SUBSTANCES Batch: 0.0 Continuou	014 MJ _{ex}	UTILITIES AND AUXILIARY SUBSTANCES	PROCESSING	
DRUG PRODUCTION	PLANT	1 packed tablet at plant gate: 0.047 MJ _{ex}	DISTRIBUTION	1 packed tablet at disposal of costume patient: 0.047 MJ _{ex}	
AND ON-SITE UTILITY PROCESSES	AND ON-SITE UTILITY PROCESSES		& TRANSPORT		
Batch: 0.011 MJ _{ex} Continuous: 0.012	MJ _{ex} Batch: 0.0	035 MJ _{ex} ous: 0.035 MJ _{ex}		CONST	

Results:

- **API dose** (Active Pharmaceutical Ingredient) most sensitive parameter (10% reduction API dose \rightarrow 7% resource consumption reduction)
- Process improvements through valorisation of treated wastewater (e.g. cooling media) and exhaust air heat recuperation → 33%
 reduction of exergy losses

Economic point of view:

Direct cost reduction (26% resource consumption reduction) →
 Lean Manufacturing

BIG

Bio-Ingenieurswetenschappen

Gent

Corporate Sustainability Reporting

- Marketing, communications
- Meeting (European) legislations and voluntary initiatives

AIA

ALUMNI INGENIEURS K.U.LEUVEN

Faculteiten ingenieurswetenschappen & bio-ingenieurswetenschappen

INSPIRED BY ENGINEERS

ie-net.be