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Abstract— If accurate short term prediction of electricity 

consumption is available, the Smart Grid infrastructure can 

rapidly and reliably react to changing conditions. The economic 

importance of accurate predictions justifies research for more 

complex forecasting algorithms. This paper proposes road 

traffic data as a new input dimension that can help improve very 

short term load forecasting. We explore the dependencies 

between power demand and road traffic data and evaluate the 

predictive power of the added dimension compared with other 

common features, such as historical load and temperature 

profiles. 

Index Terms—load forecasting; power demand; regression 

analysis; smart grid; traffic data 

I. INTRODUCTION  

Load forecasting applications are extremely important for 
any energy management system, to increase the energy 
distribution efficiency, minimize financial risks and enable 
demand response strategies, e.g., through advance pricing 
schemes. Furthermore, any error in the power demand 
prediction can have a significant economic impact [1]. 
Consequently, load forecasting is a well researched area 
addressed in a large number of publications every year. 

 Energy consumption flow is the relative change in the 
electrical consumption over a geographical region. For 
instance, during working hours, electrical consumption is 
mostly concentrated around industrial and office locations; 
whereas during other times, residential locations have higher 
levels of energy consumption [2]. Thus, positive energy flows 
take place during commuting times from industrial and office 
locations to residential areas. Should energy consumption 
flows be known a priori, the energy generation, transmission 
and distribution systems can shift loads proactively, without 
causing instability in the system, plan resources accordingly 
and offer accurate price predictions. For that reason, 
correlating the movement of vehicles (and inherently 
considering the mobility of people) with electrical usage 
seems conceptually valuable for improving power 
consumption predictions. This could be very useful 
particularly in the case of Very Short Term Load Forecasting 
(VSTLF), with the forecasting period ranging from minutes 
to several hours in advance of present time. In such cases, 
traffic data can be used to fine tune day-ahead load forecasts. 

In this context, our paper investigates if and how readily 
available traffic information, supplied by an Intelligent 
Transportation System, can be used to enhance very short 
term load forecasting, by exploring the dependencies between 
traffic flows and power consumption in the same 
geographical area. We propose the simultaneous analysis of 
multiple sources of information and data about the smart grid 
network, the intelligent transportation system (e.g., 
geographic information systems, movement of 
people/vehicles), and other sources (e.g., demographics, 
public events and schedules, etc.)  in order to correlate these 
multiple sources of scheduled and real-time information to 
predict energy flow dynamics in a smart grid.  

 

Figure 1. Causal network with factors affecting Power Demand 

Our ultimate goal is to narrow down the uncertainty about 
the factors that drive power demand and take into account 
unexpected, direct or indirect, events outside the electrical 
network (e.g., a fast evolving storm or a traffic jam), which 
can significantly influence human mobility and consequently 
power demand. Figure 1 illustrates the targeted overall system. 
In particular, this paper explores the potential predictive value 
of transportation data. 

The rest of the paper is organized as follows. Section II 
outlines related work in this area. Section III presents the 
different datasets we used. Section IV analyzes the statistical 
dependencies between traffic data and power demand. Section 
V shows the experimental results of our proposed novel 
predictor to enhance a sample load forecasting algorithm. 
Section VI ends with conclusions and future work.  
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II. RELATED WORK 

There exist a wide variety of forecasting algorithms 
employing statistical techniques or artificial intelligence 
principles. Outstanding examples from the literature are based 
on iterative reweighted least-squares [3], autoregressive 
integrated moving average (ARIMA) [4], fuzzy logic [5], 
ARMAX models and genetic algorithms [6], wavelet echo 
state networks [7], expert systems [8] and support vector 
regression (SVR) [9]. Algorithms get more sophisticated (for 
example, Aung et al. [9] claim a 98.4% accuracy of predicting 
the peak load of a given day), but the number of attributes and 
features applied in the load prediction remain almost the same: 
historical load and temperature, day of the week, season, 
whether it is a holiday or not, any social events (strikes, sport 
events, etc.) and forecasted temperature. 

As pointed out in [10], similar days in terms of the known 
variables mentioned above, may present very different 
patterns in the electric load. Thus, unknown factors remain 
that influence the power demand. It is well known in machine 
learning that more independent features that correlate well 
with the class improve the learning [11]. Hence, any 
previously mentioned algorithm could benefit from an 
additional variable that captures a new dimension correlated 
with power consumption, e.g., road traffic data. Due to its 
increasing importance in traffic management and traveler 
information systems [12], nowadays multiple companies offer 
such traffic data in real time. Thus, traffic information can be 
used as sensory data to measure human dynamics and extract 
useful information in independent dimensions. Integration 
into, e.g., power grid management/control systems can be seen 
as part of the combination of physical infrastructures and 
technologies in the paradigm of Smart Cities [13]. 

In order to reduce the “unknown factors” that influence 
power consumption, we propose road traffic as a new feature 
to improve prediction. It can take into account unexpected 
(non-recurrent) events, such as a fast evolving storm or an 
accident that might create an unexpected load profile, which 
could not be explained by the previously mentioned features. 
However, whereas the relation between weather and load is 
well understood (e.g., [14] [15]), to our knowledge, traffic has 
never been used to improve load forecasting. 

III. DATA SETS 

Our study exploits three different datasets from different 
sources to analyze the interdependencies of power, traffic and 
weather data in the same region and over the same period of 
time. In this section, we provide an overview of the different 
datasets that have been the basis of our studies, and formulate 
the mathematical representation of all our variables. 

The power consumption data used in this study is part of 
the Flemish project LINEAR (Local Intelligent Networks and 
Energy Active Regions [16]). It deals with hundreds of 
houses distributed across the region of Flanders, Belgium. As 
part of the project, power consumption readings from every 
participating house are collected every 15 minutes. We will 
focus on the year 2011 for the experiments in this paper. 
Figure 2 gives a visual overview of the aggregated day 
profiles of 200 houses over the entire year, denoted by L(t,d). 

 

Figure 2. L (t,d): load in kW per 15min interval over 260 weekdays. 
Summer days occupy the central strip of the graph and they present less 
power consumption. 

The traffic dataset was obtained from the Belgian 
company Be-Mobile. It was provided in the form of traffic 
jam length for the main roads in Belgium, with an accuracy 
of 50m. Calculations are based on live gps-position tracking 
of both professional drivers and users of personal traffic 
information devices, resulting in a fleet of more than 200.000 
vehicles. Figure 3 gives a visual overview of the aggregated 
traffic jam length day profiles for the year 2011, denoted by 
J(t,d). 

 

Figure 3. J(t,d): cumulative traffic jam length in kilometers over 260 
weekdays, as in Figure2. No seasonal patterns are obvious.  

The meteorological data used in this study was provided 
by the National Weather Institute of Belgium (KMI). It 
consists on temperature and precipitation data with a 15 
minute interval for a representative city in the Flemish region. 
In this paper we use T(t,d) for temperature and  R(t,d) for 
rain/precipitation data. 

It is important to note that the geographical region of 
interest in all our datasets is Flanders. Temperatures vary 
from around 3°C in the winter to 17°C in the summer. Thus, 
heating in the winter triggers power consumption, but we 
don’t observe a contribution of AC equipment, since this is 
not widespread in Flanders. In addition, the load profiles 
belong to residential homes. Consequently, only afternoon 
data is relevant to our studies (afternoon traffic influences 
when the users arrive home). Furthermore, we will focus our 
studies on weekdays where the commute work-home can be 
identified in the traffic profiles.  
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In this work we use the notation presented in TABLE I to 

represent the different dimensional and measured variables: 

 
TABLE I. Variables 

variable definition Value/unit 

N Number of samples per day 

All days: 96 (one every 15min) 

Afternoon: 37 (from 12:00 to 
21:00) 

t Sample# 12:00 < t <21:00 

D Total number of days 
Total:365 days 

Weekdays:260  

d Day# 1 ≤ d ≤260 

Δt 

Shift in traffic data for 

accounting for delayed 

dependencies 

0< Δt ≤8 (2hours) 

δt 
Time in advance targeted for 

prediction 
15min≤δt≤2hours 

L(t,d) 
Power Consumption – Load  

profiles 

unit: kW 

 

J(t,d) Traffic Jam Length profiles unit: meter 

T(t,d) Temperature profiles unit: degree Celsius 

R(t,d) Precipitation profiles unit: centimeter 

 

IV. DATA ANALYSIS 

In this section, we analyze the causal dependence of 
variables of interest using correlation metrics in order to 
determine whether traffic could be used as a predictor or not, 
and under which circumstances. Our goal is to demonstrate 
that traffic jam length (J) has a measurable influence on 
power consumption, i.e., load (L). First, we will experiment 
with correlations at different times of the day (t) and various 
shifts in the traffic data (Δt). Second, the effect of various 
environment conditions – rain and traffic jams – will be 
analyzed. And finally, we will extend our calculations to the 
relationship between load and temperature (T); which gives 
us a metric to compare both influences.  

Predictability is strongly connected to correlation. When 
two series are highly correlated, a predictive relationship can 
be extracted and exploited in practice. Consequently, if traffic 
is correlated with load, it could be used as a predictor in load 
forecasting and improve the accuracy of the forecast. The 
correlation degree between two variables can be measured by 
different statistical metrics: Pearson’s correlation coefficient, 
Spearman’s correlation coefficient, Mutual Information, etc. 
We have chosen the Pearson’s correlation coefficient as it is 
the most common and widely used in the literature. Pearson’s 
correlation coefficient ranges from –1.00 (negative 
correlation) to +1.00 (positive correlation) and is calculated by 
dividing the covariance of two variables by the product of 
their standard deviations. In our case, for a fixed t [12:00, 
21:00] with d as running variable: 

   
(1) 

In our study, we will discretize the levels of correlation 
more strictly compared to [15]: 

 | ρ | ≤ 0.1 represents no correlation. 

 0.1 < | ρ | ≤ 0.3 represents small correlation. 

 0.3 < | ρ | ≤ 0.6 represents medium correlation. 

 0.6  < | ρ | ≤ 1.0 represents strong correlation 

Compared to temperature, the effects of traffic may be 
much more delayed in time, e.g., traffic at 4pm may influence 
load at 6pm. Figure 4 shows the correlation coefficient for 
load and traffic. The different curves represent different shifts 
in travel data, i.e. they correspond to the correlation between 
L(t) and J(t – Δt) for Δt = 15 min, 30 min, 1h and 2h.  

Figure 4. The correlation coefficient between traffic and load with different 
offsets shows medium correlation at relevant afternoon hours. 

One can see that correlation varies along the day, being 
stronger from 17:00 until 20:00. At the peak, the correlation 
is around 0.5, which can be considered as medium 
correlation. In addition, at each time t, the highest correlation 
coefficient occurs for a different traffic offset (Δt); e.g., at 
17:00 the correlation coefficient ρ is maximum for the curve 
Δt = 0, while at 19:30 the load correlates better with traffic 
from two hours ago (Δt = 2h).  

Mobility patterns are reflected in the way curves in Figure 
4 change from negative to positive correlation. From one day 
to another, when traffic is high during work-home commute 
hours, it slows down people and makes them arrive home 
later; therefore homes start consuming energy later. Before 
16:00,  if traffic is high, load is low, thus negative correlation. 
However, after 16:00, more traffic implies a higher 
consumption, hence positive correlation. 

 

Figure 5. Scatterplot of traffic jam length vs. power demand for t = 5:15pm 

and Δt =15 min, where ρJ,L=0.4. Most of the scatterplot points are located at 

low traffic positions. 

Like many popular statistics, the Pearson’s coefficient is 
not robust [17]. As a result, its value can be ambiguous if 
outliers are present [18]. An inspection of the scatter plot in 
Figure 5 (traffic and power for t = 17:00, where p = 0.5), will 
help us understand better the correlation values calculated in 
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Figure 4. Note that most of the points are grouped at low 
traffic positions, below 50km.  

Figure 6. Absolute value of the correlation coefficient between traffic and 
load considering a traffic offset up to 2hours. The various lines area 
calculated for days with different traffic and precipitation conditions. The 
correlation coefficient reaches its maximum in rainy days with high traffic. 

Our traffic datasets aggregate traffic information for a 
large region and the residential houses are distributed across 
the area. The effects of an accident or an abnormal traffic jam 
in a specific road segment may be obscured in the overall 
data. In spite of the larger region aggregation, rain shows an 
effect on the entire network, slowing down the traffic in the 
entire region. Days with combined heavy rain and heavy 
traffic are the most relevant in this analysis. Indeed, as we can 
see in Figure 6, correlation between traffic and load 
dramatically increases for the rainy days. 

Figure 6 compares the correlation for different types of 
days. At every time t, it represents the maximum absolute 
correlation coefficient; across the time shifts of interest (very 
short term), as defined below. 

           
(2) 

 

Figure 7. Correlation between temperature and load for days with different 
traffic and precipitation conditions. The correlation coefficient gets weaker in 
high traffic and rain scenarios. 

At every time t, a day is considered to suffer heavy traffic 
if the aggregated traffic from t-2h until t is at least ¼ above 
the average. 

Correlation coefficients are not absolute metrics, i.e., a 
correlation of 0.5 may be significant in some cases and 
insufficient in others. It is therefore important to compare the 
correlation between load and traffic with that of load and 

other variables. Figure 7 shows the correlation of temperature 
and load for all days, high traffic days and days with high 
traffic and rain.  As we can see, the dependency gets weaker 
under certain environmental conditions (heavy rain + heavy 
traffic).  

V. LOAD FORECASTING 

As we have seen in Section IV, there are several 
indications that support our hypothesis that traffic has a 
measurable influence on load, particularly in certain 
conditions such as rain and heavy traffic. However, our 
ultimate goal is to demonstrate that traffic data can be 
exploited for better load forecasting. In this section, we 
evaluate predictive contributions from the traffic variable. For 
illustrating this, we have designed four different pattern 
matching based prediction algorithms.  

Our evaluation is for weekdays only (260 days), of which 
we have used the 80% for training (208 days) and 20% for 
testing (52 days). The load forecasting algorithm for time t 
gives a prediction for load  at a future time t+ δt. Intuitively, 
it looks for patterns in the training data similar to the pattern 
in the present data, and then aggregates load from the similar 
days. Formally this is done as follows: 
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where L̂ is the predicted load, L is the load at the present 

time, L
~

 is the aggregated load from similar days, k is the 

number of similar days, iw = 1/d and d is the Euclidian 

distance between the measured present point and similar 
points in the feature space.  

The main difference between the algorithms lies in the 
feature spaces used in the calculations:  

1. Alg_L: Load features 

2. Alg_L_T: Load and temperature features 
3. Alg_L_T_L: Load, temperature and traffic features 
4. Alg_L_T_L_R: Load, temperature, traffic and high 

traffic + rain features. 

The load and traffic features are computed for the present 
time and a time offset equal to Δt=15min, 30min,1hour and 2 
hours. The high traffic + rain feature is a Boolean dimension, 
where the number of rainy and high traffic days (R+T days) is 
computed at every time t with a window of two hours. After 
the features are selected, the feature vectors are normalized 
using the second norm. The second norm of a vector X is 
calculated as: 

XXofeigenvalueX Hmax                   (5) 

 
TABLE III shows the relative prediction error (average 

and standard deviation), of the previously described 
algorithms; over all the testing days. For each testing day, the 
relative error is calculated as follows: 
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actualLoad

LoadcalculatedactualLoad
errorrelative          (6) 

As we can see in TABLE II, using traffic as an additional 

feature adds value to the prediction. This is true for the times 

and environment situations discussed along the paper. The 

results show the best performance when considering rain and 

traffic days separately. These numbers may vary using more 

sophisticated algorithms, but the intrinsic benefit of using 

traffic as a forecasting feature would remain if carefully 

chosen. 

 
TABLE II. Relative error in % (µ) and standard deviation (σ) for the load 

forecasting algorithms with time window for prediction δt= 1hour and 

prediction times t + δt =15:00, 16:00, 17:00 and 18:00. Every experiment 
have been run 100 times for assuring statistical significance.  

Algorithm 
15:00 16:00 17:00 18:00 

µ(σ) µ (σ) µ(σ) µ(σ) 

Alg_L 
4.03  

(3.43) 

3.95 

(3.48) 

5.17 

(3.84) 

5.18 

(4.14) 

Alg_L_T 
4.17  

(3.33) 

3.84 

(3.55) 

4.77 

(3.67) 

4.68 

(3.74) 

Alg_L_T_J 
4.27  

(3.38) 

3.91 

(3.54) 

4.76 

(3.5) 

5.06 

(4.25) 

Alg_L_T_J_R 
3.71  

(2.44) 

2.86 

(2.43) 

3.59 

(2.96) 

3.16 

(2.16) 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed road traffic data as additional 
input to improve short term load prediction. We analyzed the 
dependence between traffic and load and evaluated prediction 
algorithms exploiting the added feature on real datasets 
gathered within the region of Flanders, Belgium. We 
demonstrated the correlation between road traffic data in the 
form of traffic jam length, and power demand, and compared 
this with correlations between power demand and 
temperature. Results indicate a significant correlation at 
relevant hours for rainy and high traffic days. These findings 
have been applied in a novel load forecasting algorithm with 
positive results. 

Linking mobility with electrical grid data is becoming 
increasingly important due to the growing green transportation 
initiatives around the world. These initiatives promote zero-
emissions technologies, such as e-Highways or electric vehicle 
charging. Future work will focus on applying and extending 
our approach to new datasets with different characteristics, 
e.g., AC consumption patterns, big and small cities, etc. In 
addition, a natural extension of our study is to analyze a 
network with a noteworthy penetration of electric vehicles, 
where the electrical load is significant and varies depending on 
when and where cars recharge.  
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