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Abstract—Genomic prediction for plant breeding requires
taking into account environmental effects and variations of
genetic effects across environments. The latter can be modelled
by estimating the effect of each genetic marker in every possible
environmental condition, which leads to a huge amount of effects
to be estimated. Nonetheless, the information about these effects
is only sparsely present, due to the fact that plants are only tested
in a limited number of environmental conditions. In contrast, the
genotypes of the plants are a dense source of information and
thus the estimation of both types of effects in one single step
would require as well dense as sparse matrix formalisms. This
paper presents a way to efficiently apply a high performance
computing infrastructure for dealing with large-scale genomic
prediction settings, relying on the coupling of dense and sparse
matrix algebra.
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I. INTRODUCTION

Genomic prediction methods most often rely on a linear
mixed model framework that models at the same time fixed
effects as well as random genetic effects [1]. These genetic
effects are modelled by dedicating a small effect to every
genetic marker, used to genotype the individuals. The most
frequently used SNP arrays consist of 50,000 markers, but
even genotypes with 700,000 markers are already available
for dairy cattle [2]. DAIRRy-BLUP [3] was developed to use
distributed systems for analyzing data sets with a large number
of genotyped individuals, applying only dense linear algebra
because genetic marker information is mainly dense.

In animal breeding such an analysis method can be very
useful, because environmental conditions are more or less
constant over the years, due to the fact that animals are
mainly held in stables. However, when cultivating plants, the
environment and some specific environmental conditions (e.g.
soil moisture, solar radiation and air humidity) can have a
much stronger impact on the phenotypic trait and effects of
genetic markers may vary in different environments. It is
thus recommended to also include so-called G × E effects
in the analysis [4]. Since every marker is coupled to each
environmental condition, modelling these effects increases
significantly the problem size. Assuming that plants are tested
in 100 different environmental conditions and genotyped for

50,000 markers, the number of G × E effects rises up to
5× 106. Using only dense matrix algebra to provide estimates
of all these effects would require huge distributed systems.
Luckily, the information about the G × E effects is usually
very sparse and thus a coupled method using sparse and dense
linear algebra is presented here for analyzing such large-scale
genomic prediction settings.

II. MATERIALS AND METHODS

A. Statistical background

A linear mixed model for a genomic prediction setting with
genetic marker effects and G× E effects can be written as:

y = Xb+ Zu+Td+ e , (1)

with y the vector of n observations, b the vector of m fixed
effects, u and d vectors of respectively l and k random effects
and e the residual error. The difference between both random
effects is that u, representing the G×E effects, is only sparsely
coupled to the observations through the incidence matrix Z
while d, representing the marker effects, is densely coupled to
the observations through incidence matrix T. The fixed effects
are coupled to the observations through incidence matrix X,
whose sparsity is irrelevant because the number of fixed effects
is usually a lot smaller than the number of random effects.

Random effects are assumed to be drawn from a normal
distribution, since it is expected that only a small part will
have a significant effect, while the largest part will only affect
the observations in a marginal way. Some other distributions
for genetic marker effects have been proposed, but it has
been shown that, when no major genes contribute to the trait,
these Bayesian methods do not lead to improved prediction
accuracies compared to linear predictions when assuming
normally distributed marker effects ([5], [6], [7]). Although
the exact distributions of the effects and the residual errors
are not known, some assumptions are commonly made on the
variance structure based on prior information:

[

u
d
e

]

∼ N

(

0, σ2

[

φE 0 0
0 γG 0
0 0 In

])

. (2)

E and G are constant square matrices of respective dimensions
l and k. These are usually sparse since every random effect
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is only correlated with a small number of other effects. It
can thus be concluded that the observations are also normally
distributed:

y ∼ N (Xb,V) ,

with V = σ2
(

In + φZEZT + γTGTT
)

.
(3)

When little information is available about the data, E and G
may be simplified as being identity matrices, which is then
also referred to as ridge regression BLUP (RR-BLUP) [8].

B. Estimating the effects

The Best Linear Unbiased Estimates and Predictions
(BLUE and BLUP) of the fixed and random effects are linear
estimates or predictions that minimize the mean squared error
and exhibit no bias. These are also the solutions of the so-
called Mixed Model Equations (MME) [9]:




XTX XTZ XTT

ZTX ZTZ+ 1
φ
E−1 ZTT

TTX TTZ TTT+ 1
γ
G−1









b̂
û

d̂



=





XTy

ZTy

TTy



. (4)

The coefficient matrix C of this equation is a square matrix
of size (m+ l+ k) and is made up of both sparse and dense
blocks:

C =

[

A B

BT D

]

, (5)

with A =

[

XTX XTZ

XTZ ZTZ+ 1
φ
E−1

]

, (6)

D = TTT+
1

γ
G−1 , (7)

BT =
[

TTX TTZ
]

, (8)

where A and B are sparse matrices and D is a dense matrix.

For solving matrix equation (4) it is thus appropriate to
apply optimized routines for as well sparse as dense matrices.
A step-by-step blockwise solution of this matrix equation boils
down to:

1) Solve AwA =

[

XTy

ZTy

]

for wA.

2) Calculate the Schur complement of A:
S = D−BTA−1B.

3) Solve Sd̂ = TTy −BTwA for d̂.

4) Solve A

[

b̂
û

]

=

[

XTy

ZTy

]

−Bd̂ for

[

b̂
û

]

.

It can easily be seen that steps 1 and 4 only require methods
optimized for sparse matrices, while steps 2 and 3 also involve
dense matrices.

C. Estimating the variance components

In Eq. (2) the structure of the variance matrices was defined
based on 3 variance components φ, γ and σ2. These variance
components need to be estimated based on the data, which is
implemented using the Average Information Restricted Maxi-
mum Likelihood procedure (AI-REML) [10]. AI-REML is an

iterative procedure where the variance components are updated
every iteration as follows:

κn+1 = κn −HAI
−1
n ∇lREML(κn) , (9)

where κn is the vector of variance components at iteration
n (here κ =

(

σ2, φ, γ
)

), HAIn is the AI update matrix at
iteration n and ∇lREML(κn) is the gradient of the REML
log-likelihood with respect to κ evaluated for κn.

The REML log-likelihood function can be written as:

lREML(σ
2, φ, γ) =−

1

2

(

(n−m) log σ2 + l logφ

+k log γ + log |E|+ log |G|

+ log |C|+
1

σ2
yTPy

)

,

with P = V−1 −V−1X
(

XTV−1X
)

−1
XTV−1 .

(10)

When φ and γ are known, an analytic solution for the maxi-
mization of this likelihood function with respect to σ2 can be
found, however, for maximization in function of φ and γ, we
have to resort to the iterative AI-REML technique. For this
iterative technique an evaluation of the first partial derivative
of lREML with respect to φ and γ is necessary:

∂lREML

∂φ
=−

1

2

(

l

φ
−

tr(C−1
(2,2)E

−1)

φ2
−

ûTE−1û

σ2
eφ

2

)

(11)

∂lREML

∂γ
=−

1

2

(

k

γ
−

tr(C−1
(3,3)G

−1)

γ2
−

d̂TG−1d̂

σ2
eγ

2

)

, (12)

with C−1
(2,2) and C−1

(3,3) the blocks of the inverse of C cor-

responding with the blocks in Eq. (4) containing respectively
ZTZ and TTT. For evaluating the traces in these equations,
the only elements of the inverse of C to be calculated are
those in the aforementioned blocks corresponding to non-
zero elements of E−1 and G−1. However, because TTT is
completely dense, calculating a sparse subset of C−1

(3,3) is not

efficient and thus the entire dense inverse will be calculated. It
can also often be assumed that E is a diagonal matrix, which
reduces the problem to calculating only the diagonal elements
of C−1

(2,2).

A stepwise approach for finding the required inverse ele-
ments of C−1

(2,2) and C−1
(3,3) is presented below:

1) Calculate the Schur complement of A:
S = D−BTA−1B.

2) Compute the inverse of S (C−1
(3,3) = S−1).

3) Compute a selected inverse of sparse matrix A.
4) Solve AY = B for Y.
5) The required elements of C−1

(2,2) can be calculated as:

C−1
(2,2)i,j

= A−1
i,j +YiS

−1YT
j ,

with Yi the i-th row of Y and YT
j the j-th column

of YT .

III. PARALLEL IMPLEMENTATION

The dimensions of the dense submatrix D depend on the
number of genetic markers included in the analysis. Currently
the number of markers for crop plants varies between 5,000
and 100,000 [11], which means that the dense submatrix can



consume up to 80 GB of memory when its elements are being
stored in 64-bit floating-point format. Therefore, a critical step
in efficient parallelization of this method is to apply distributed
computing techniques such that matrix D is distributed across
the private memories of all designated processes. To perform
most common algebraic operations on such a distributed
matrix, the standard libraries PBLAS [12] and ScaLAPACK
[13] are employed, for which vendor-optimized versions are
available.

Sparse matrices are stored in Compressed Sparse Row
(CSR) format, which consists of an array with the values of the
non-zero elements (floating-point), an array with the column
indices of the non-zero elements (integer) and an array with
indices indicating the start of a new row in the two other
arrays (integer). The PARDISO library ([14], [15], [16]) was
employed for solving sparse matrix equations and calculating
a selected inverse of matrix A, which only consists of the
elements of the inverse corresponding to non-zero elements in
the factorization of A [17]. This library can perform these op-
erations multi-threaded on Shared Memory Processors (SMP),
but not yet on a distributed system. To utilize this optimized
library on a sparse matrix with a large dense submatrix, an
algorithm was developed to couple PARDISO with distributed
computing techniques, used for the algebraic operations on the
dense submatrix.

A. Calculating the Schur complement of A

The Schur complement S of A is needed for as well the
solution of the MME (step 2 in Section II.B) as for calculating
elements of the inverse of C (step 1 in Section II.C). Both
sparse and dense matrices are involved in the computation
of this Schur complement and moreover, the dense matrix is
stored in a distributed fashion, while the sparse matrices are
not.

The parallelization of this task is straightforward, because
the calculation of S can be performed on each block S(i,j) of
S independently:

S(i,j) = D(i,j) −BT
i A

−1Bj , (13)

where S(i,j) and D(i,j) are the (i, j)-th blocks of respectively

S and D, BT
i are the rows of BT corresponding to the rows

of the (i, j)-th block of D and Bj are the columns of B
corresponding to the columns of the (i, j)-th block of D. The
process possessing block (i, j) of D thus only needs some
rows of sparse matrix BT and some columns of B. Only the
root process assembles BT entirely and this process thus has
to send the desired rows of BT and columns of B to the
other processes using MPI [18]. Each process then still has to
construct sparse matrix A from X and Z, which are always
stored in CSR format.

For each submatrix of D at the disposal of the process,
the sparse matrix equation AYj = Bj is solved for Yj with
PARDISO and the product BT

i Yj , performed by PBLAS and
thus stored as a dense matrix, is directly subtracted from D(i,j).
In this way, D is overwritten by S, keeping it stored in a
distributed way.

B. Calculating elements of the inverse of C

The dense matrix equation in step 3 of Section II.B is
directly solved by ScaLAPACK using the factorization of S.
ScaLAPACK can also compute the complete inverse of a
distributed matrix using the factorization of this matrix, which
is needed in step 2 of Section II.C.

For computing the selected inverse of a sparse matrix, it is
not yet possible to utilize processes that do not share memory.
Therefore, only the root process calculates the selected inverse
of A. In the previous section it was shown that each process
computes the solution of AYj = Bj for Yj . This solution
remains in memory and is identical for processes in the same
column of the process grid. Additionally, it can be seen as
if the entire solution Y of the matrix equation AY = B is
stored in a distributed way across the processes in the first row
of the process grid. The matrix product S−1YT

j for step 5 in
Section II.C can thus be performed by PBLAS and the result
will be distributed across the processes of the first row of the
process grid. Finally, a dot product between the distributed
vectors Yi and S−1YT

j can be calculated using PBLAS and
the root process then adds this dot product to the corresponding
element of A−1 to return the desired element of C−1

(2,2).

IV. RESULTS

A prototype of the parallel implementation was tested on
a small data set from CIMMYT’s1 Global Wheat Program,
which contains information on 599 wheat lines whose grain
yield was evaluated in four environments. Genotypic infor-
mation was available for 1279 markers using Diversity Array
Technology. This data set is also publicly available with the
BLR package of R [19] and was previously analyzed using
single-environment [20] and multi-environment [21] models.
Our model was fit to the data using four fixed environmental
effects (b), 1279 random marker effects (d) and 5116 random
marker-by-environment interaction effects (u). Tenfold cross-
validation was performed with the training sets missing all
information of the lines in the test sets and the predictive ability
of the model was evaluated using the correlation between
predicted and observed values for the phenotypes in each
environment. The tenfold cross-validation yielded a mean
correlation of 0.439 over all environments, which is close to
values obtained in [21].

Although this data set is too small to really observe the
benefits of the parallelized approach, its scaling behavior was
investigated for an increasing number of MPI processes. There-
fore the entire data set was analyzed on a cluster consisting of
nodes with 16 CPU cores (Dual Intel Xeon CPU E5-2670)
and 64 GB RAM per node, which are linked through an
FDR Inifiniband network. For these tests, one MPI process
was mapped to each node, and on each node, all cores were
employed using OpenMP. The total analysis of the data set
required 442 seconds on 1 node, 108 seconds on 4 nodes
and 64 seconds on 9 nodes. This already shows that some
scaling was obtained with the prototype of the parallelized
implementation, but further investigation is needed to check
whether additional speedup can be gained.

1International Maize and Wheat Improvement Center, Mexico



V. CONCLUSION

Current genomic prediction settings can include infor-
mation from ten thousands of animals or plants for whom
genotypes are available with up to 100,000 markers. The
analysis of such large-scale genomic datasets requires efficient
usage of high performance computing infrastructures. In plant
breeding the global environment and some specific environ-
mental factors can play an important role. Phenotypes not only
depend directly on these environmental effects, but marker
effects may vary under the influence of certain environmental
conditions. The so-called G × E effects are thus included in
the analysis, which can lead to a dramatic increase in effects to
be estimated Luckily, information on G× E effects is sparse,
because each plant is only tested in a few environments and
so sparse matrix formalisms can be employed to minimize
memory requirements when processing large-scale data sets.

This paper presents a parallelized methodology for analyz-
ing genomic prediction settings with G×E and genetic marker
effects in a single step. The part of the MME arising from the
genetic marker effects is stored in a distributed way and most
algebraic operations on this dense matrix are performed by
PBLAS and ScaLAPACK. To increase memory efficiency, the
other parts of the MME are stored as sparse matrices, on which
algebraic operations are performed by employing optimized
routines from the PARDISO library. First tests with a prototype
of this coupled parallel implementation have shown that pre-
diction accuracy is comparable to other implementations and
that it scales well when employing multiple compute nodes.
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diagonalization techniques for the anderson model of localization,”
SIAM Rev., vol. 50, no. 1, pp. 91–112, Feb. 2008. [Online]. Available:
http://dx.doi.org/10.1137/070707002

[16] O. Schenk, A. Wchter, and M. Hagemann, “Matching-based
preprocessing algorithms to the solution of saddle-point problems
in large-scale nonconvex interior-point optimization,” Computational

Optimization and Applications, vol. 36, no. 2-3, pp. 321–341, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10589-006-9003-y

[17] K. Takahashi, J. Fagan, and M. Chin, “Formation of a sparse bus
impedance matrix and its application to short circuit study,” 8th Power

Industry Computer Application Conference Proceedings, p. 63, 1973.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-

The Complete Reference, Volume 1: The MPI Core, 2nd ed. Cambridge,
MA, USA: MIT Press, 1998.

[19] G. de los Campos and P. Prez, “BLR: Bayesian linear
regression. version 1.3,” 2012. [Online]. Available: http://cran.r-
project.org/web/packages/BLR (verified 20 Nov. 2014)

[20] J. Crossa, G. d. l. Campos, P. Prez, D. Gianola, J. Burgueo, J. L.
Araus, D. Makumbi, R. P. Singh, S. Dreisigacker, J. Yan, V. Arief,
M. Banziger, and H.-J. Braun, “Prediction of genetic values of
quantitative traits in plant breeding using pedigree and molecular
markers,” Genetics, vol. 186, no. 2, pp. 713–724, 2010. [Online].
Available: http://www.genetics.org/content/186/2/713.abstract

[21] J. Burgueño, G. de los Campos, K. Weigel, and J. Crossa, “Genomic
prediction of breeding values when modeling genotype× environment
interaction using pedigree and dense molecular markers,” Crop Science,
vol. 52, no. 2, pp. 707–719, 2012.


