# Toxin-neutralizing antibodies protect against *Clostridium perfringens* challenge in an intestinal loop model for bovine enterotoxaemia

**<u>E. Goossens</u>**<sup>a</sup>, S. Verherstraeten<sup>a</sup>, B. Valgaeren<sup>b</sup>, B. Pardon<sup>b</sup>, L. Timbermont<sup>a</sup>,

S. Schauvliege<sup>c</sup>, F. Haesebrouck<sup>a</sup>, R. Ducatelle<sup>a</sup>, P. Deprez<sup>b</sup>, F. Van Immerseel<sup>a</sup>

<sup>a</sup>Department of Pathology, Bacteriology and Poultry Diseases, <sup>b</sup>Department of Internal Medicine and Clinical Biology of Large Animals, <sup>c</sup>Department of Surgery and Anesthesia of Domestic Animals Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium

# Introduction

**Objectives** 

CORE



#### Bovine enterotoxaemia

- Caused by Clostridium perfringens
  - Alpha toxin and perfringolysin O involved in the pathogenesis (Verherstraeten et al. 2013)
- Sudden death  $\rightarrow$  treatment  $\rightarrow$  preventive measures needed, such as vaccination
- Lesions of hemorrhagic enteritis in the small intestine
- Veal calves
  - produce less anitbodies against *C. perfringens* toxins than beef calves
  - more vulnerable to enterotoxaemia than beef calves (Valgaeren et al. 2015)



contact: evy.goossens@ugent.be



- Can antibodies against C. perfringens toxins protect agianst the develoment of necrotic lesions in the intestine?
- Can we remove the undesired toxin activity, but conserve the immune-protective potential, from the toxin preparations?

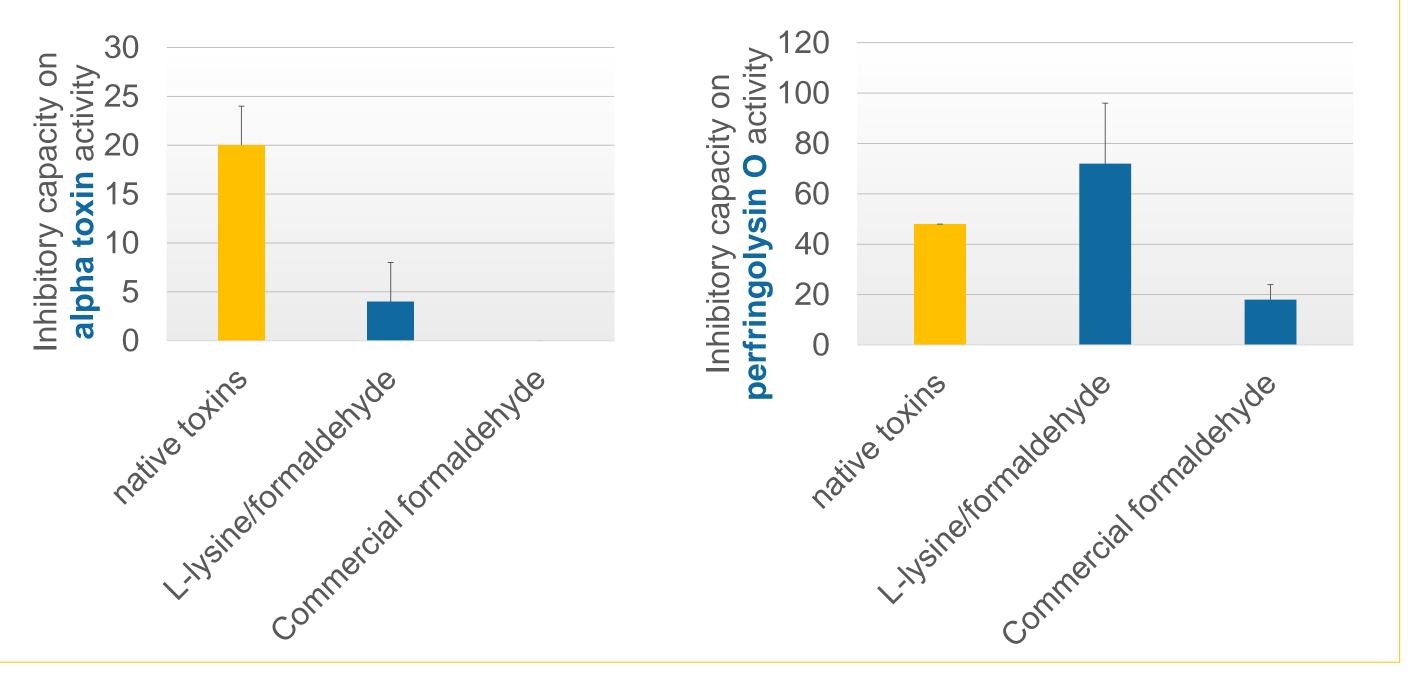
# Vaccination with *C. perfringens* toxins resulted in strong antibody responses

Two calves were immunized for each antigen

- Native *C. perfringens* toxins
- L-lysine protected, formaldehyde inactivated *C. perfringens* toxins
- Commercial formaldehyde inactivated clostridial vaccine

In all calves a strong antibody response against both alpha toxin and perfringolysin O was detected.

Table 1: antibody response towards alpha toxin and perfingolysin O measured by ELISA


| Vaccine                                        | Alpha toxin titer | Perfringolysin O titer |
|------------------------------------------------|-------------------|------------------------|
| Native toxins                                  | 64.44 ± 0.2227    | 25600 ± 0              |
| L-lysine/formaldehyde toxoid                   | 24.26 ± 2.960     | 16000 ± 9600           |
| Commercial formaldehyde<br>inactivated vaccine | 45.14 ± 20.42     | 4800 ± 1600            |

Toxin-neutralizing antibodies protect against *C. perfringens-*induced necrotic lesions

### In vitro neutralization of alpha toxin and perfringolysin O

Alpha toxin activity  $\rightarrow$  lecithinase effect on egg yolk lipoproteins. Perfringolysin activity  $\rightarrow$  hemolysis of horse erythrocytes. Toxin neutralization by pre-incubation of toxins with a dilution series of the antibodies

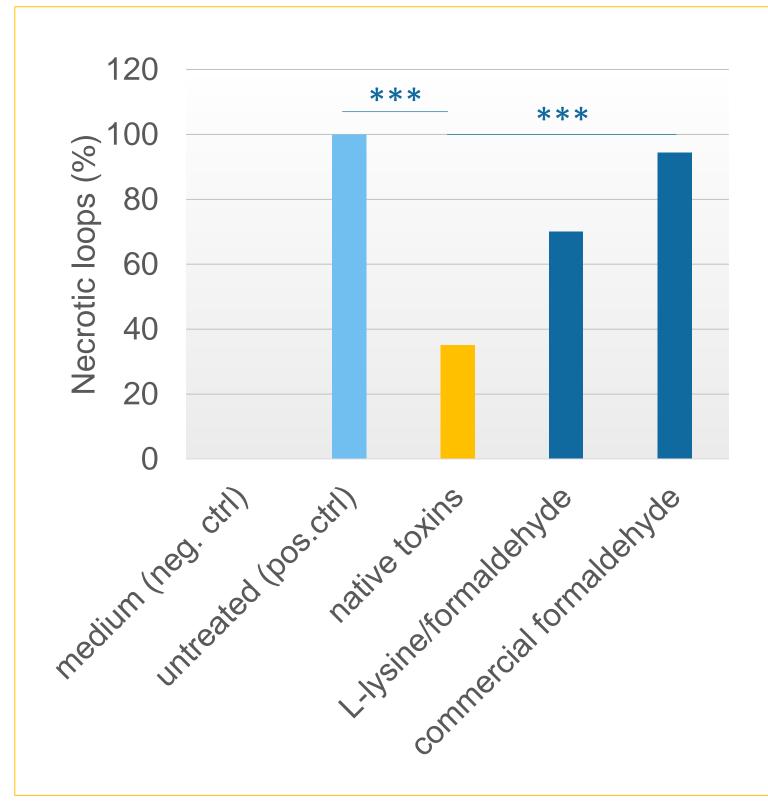
- Antibodies from calves vaccinated with native C. perfingens toxins were able to neutralize both toxin activities
- Antibodies from calves vaccinated with L-lysine protected, formaldehyde inactivated toxins were able to inhibit the perfringolysin O activity, but had less effect on the alpha toxin activity
- Antibodies from calves vaccinated with a commercial formaldehyde inactivated vaccine were less capable to inhibit both toxin activities



The potential of the antisera to inhibit *C. perfringens*-induced necrosis, was evaluated by neutralizing the development of necrotic lesions using the antisera in an intestinal loop assay (Figure 1).



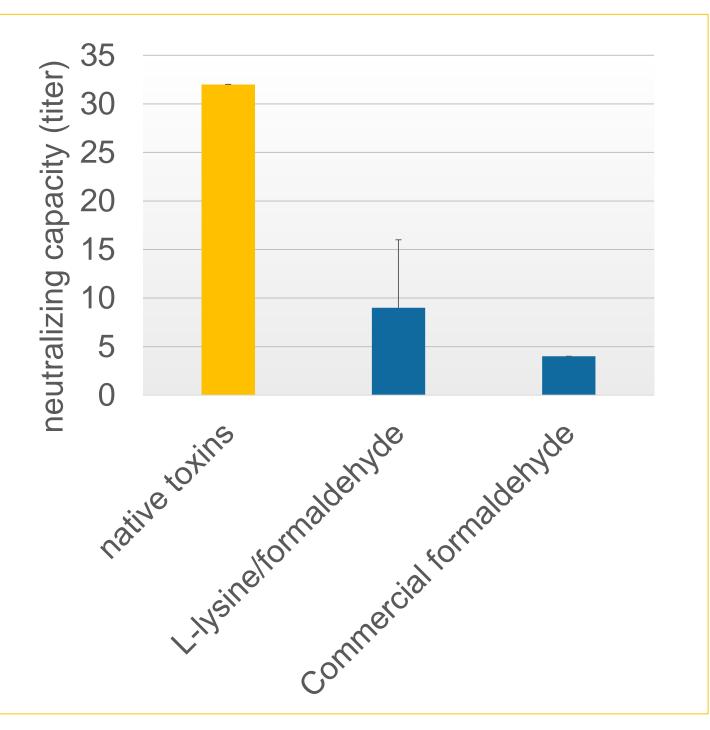





| Induction of ana<br>Ligation of loops |            |                 | Sacrification |
|---------------------------------------|------------|-----------------|---------------|
| Preparation                           |            | Incubation (5h) | Sampling      |
|                                       | Inoculatio | n               |               |

- Log phase culture
- Antibodies against *C. perfringens* toxins

Figure 1: experimental set up


The antisera were tested in 4 calves, with a total of 20 loops for each vaccine (5 loops per animal)



All control loops inoculated with *C. perfringens* alone (untreated) developed necrosis.

Figure 3: in vitro neutralization of biological activities of alpha toxin and perfringolsyin

# Toxin-neutralizing antibodies neutralize the *C. perfringens*induced cytotoxicity on bovine endothelial cells



Cytotoxicity assay: Bovine Umbilical Vein Endothelial Cells (BUVEC) exposed to filter-sterilized supernatant of *C. perfringens* Cytotoxicity quantified by a neutral red uptake (NRU) assay

Neutralization of cytotoxicity by preincubation with the antibodies.

Antibodies from calves vaccinated with native *C. perfingens* toxins were able to neutralize the cytotoxicity of *C. perfringens* on bovine endothelial cells.

Injection of *C. perfringens* together with antisera from calves vaccinated with native toxins resulted in significantly fewer necrotic loops.

Antisera from calves vaccinated with formaldehyde inactivated toxins (either L-lysine protected or the commercial inactivated vaccine) were unable to neutralize the lesion induction.

Figure 2: neutralization of the lesion-inducing potential of *C. perfringens.* \*\*\* p < 0.001 (Kruskall-Wallis analysis, followed by a Dunn's multiple comparison test) Figure 4: neutralization of *C. perfringens* cytotoxicity

### Conclusion

- Toxin-neutralizing antibodies protected against C. perfringens challenge
- Prevention of endothelial damage may be the mechanisme underlying this protective effect
- Immunization of both native and formaldehyde inactivated C. perfringnes toxins
  resulted in a strong immune respons against alpha toxin and perfringolysin O
- Only antibodies raised against native toxins were protective

At least for alpha toxin and perfringolysin O mediated diseases, antibody titers detected by ELISA are not a guarantee for protection even if protection against the disease is antibody mediated

Verherstraeten S, Goossens E, Valgaeren B, et al. The synergistic necrohemorrhagic action of *Clostridium perfringens* perfringolysin and alpha toxin in the bovine intestine and against bovine endothelial cells. Veterinary research. 2013;44:45 Valgaeren B, Pardon B, Goossens E, et al. Veal Calves Produce Less Antibodies against *C. Perfringens* Alpha Toxin Compared to Beef Calves. Toxins. 2015;7:2586-97