
Future Network and MobileSummit 2013 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2013
ISBN: 978-1-905824-36-6

Poster Paper

Round-trip time mitigation through
speculative display updating for

applications rendered in the cloud
Bert VANKEIRSBILCK1, Kevin DE WOLF, Pieter SIMOENS1,2,

Filip DE TURCK1, Bart DHOEDT1

1Ghent University, Department of Information Technology (INTEC), Internet Based
Communication Networks and Services (IBCN) – iMinds
Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium

Tel.: +32 9 331 49 38, Fax: +32 9 331 48 99, Email: bert.vankeirsbilck@intec.ugent.be
2Ghent University College, Dept. INWE, Valentyn Vaerwyckweg 1, 9000 Ghent, Belgium

Abstract: The advantages of cloud computing have revitalized interest in thin client
computing. In this thin client computing approach, an application is executed on the
thin client server, which in the cloud computing paradigm is part of a cloud environ-
ment. The user interacts with a viewer, that acts as a service-hatch: forwarding the
user events over the network to the server and accepting the returned graphical up-
dates. The major downside to this approach is that at least one network round trip
time (RTT) is required to present the application output that results from the user’s
actions. In this paper a novel speculative display mechanism is proposed to mitigate
the RTT requirement. The mechanism relies on online server side profiling of the
graphical output that follows user events, that after synchronization with the viewer is
used to speculatively update the viewer’s screen content upon receipt of user events.
This way, the impression is created that the network delay is decreased.

Keywords: Cloud computing, Speculative, Remote application execution, Latency,
Round-trip time

1. Introduction
The advent of cloud computing has introduced new possibilities to employ the thin client
computing paradigm, that is based on networked protocols to forward user input from
the viewer to the server, and to return the graphical application output for presentation
to the user on his device. This traditional thin client approach implies that at least one
network round trip time (RTT) is required to present the application output that results
from the user’s actions. Wide Area Networks (WAN) and mobile networks typically
exhibit larger latencies, making the RTT the major influence on the quality experienced
by the user.

In this paper a novel speculative display mechanism is proposed to mitigate the
network RTT. The mechanism relies on online server side profiling of the graphical
output that follows user events to dynamically construct and maintain a connected
state graph. In this state graph, a node represents a state that is linked to other states
via user events and their related graphical updates. This state graph is synchronized
with the viewer, that knowing the current state, can simply look up incoming user
events to speculatively update the screen with the graphical updates to present the
expected next state. This way, from a user perspective, a RTT can be avoided, at the
possible expense of mispredictions leading to invalid screen content. The user events
must be sent to the server to generate the correct application output and to compare

Copyright c© The authors www.FutureNetworkSummit.eu/2013 1 of 4



it to the speculatively displayed content. This allows to update the state graph and
its links, to verify the viewer displayed content to assess if it is necessary to apply
corrections, and to correct the state of the viewer if he would have diverged from the
actual state the application is in.

Using the proposed speculative display mechanism, the impression is created that
the network delay is decreased, leading to a higher Quality of Experience (QoE) for the
user. However, since the assessment of the QoE constitutes a broad study on its own,
in this paper the focus is on objective metrics of the speculative display mechanism
such as the measured RTT or reaction speed and processing overhead.

2. Related work
We alleviate on prior work [1], where we explored the potential of using a static cache
in thin client computing, and assessed the repetitiveness of screen updates.

In [2], the authors propose speculative thin client operation, focusing on viewer side
changes to maintain compatibility with existing server implementations and thin client
protocols. They have shown predictability of screen updates for both Virtual Network
Computing (VNC) [3] and Remote Display Protocol (RDP) [4] and apply a simple
Markov system for the prediction at viewer side, that relates series of user and screen
events to following screen events.

In [5], a server-based adaptive display pre-fetching mechanism is proposed that con-
sists of pre-executing the possible subsequent user events on the server and sending the
related graphics to the viewer. On reception of the user input, the matching graphical
update is presented to the user. This way, using spare server computation resources,
spare bandwidth on the network and spare memory on the client, round trip times are
effectively avoided.

3. Algorithm
The logic for the speculative display system has been designed to be asymmetric such
that the server has control over the cache contents at the viewer side. The main
advantage of this approach is that the viewer remains computationally simple.

3.1 Viewer side algorithm
At the viewer side, the algorithm is very simple. Specifically, on receipt of a mouse event
or a key stroke, the frame buffer updates that correlate to the hotspot that corresponds
to the user event in the current state are drawn on the screen.

3.2 Server side algorithm
At the server side, the viewer’s decisions are mimicked and compared to the actual
graphical output of the application. Several cases can occur:
The viewer has approximately drawn the correct content on the screen:
The potential small errors are corrected on screen as well as in the cache. The viewer is
also informed of these content corrections to keep the caches synchronized. The frame
buffer updates related to the corresponding hotspot found in the current state differ largely
from the actual application output:
Other states are checked for hotspots corresponding to the user event for which the
related frame buffer updates resemble the application output. If a matching hotspot is

Copyright c© The authors www.FutureNetworkSummit.eu/2013 2 of 4



found in another state, it is assumed that the previous state should have been the state
in which the matching hotspot was found. Consequently, the previous state is corrected
by altering the target of the hotspot that had taken the system to the incorrect state
to the found matching state. Also, the state the viewer believes to be in, is corrected
to the state known by the server.

Otherwise, no matching hotspot is found in any state, triggering the creation of a
new hotspot for the current state. For key strokes, this hotspot is defined by the key
stroke signature itself. For mouse events, this implies creating an area containing the
mouse pointer location, that is composed using the information available in the server.

4. Experimental results
The speculative display mechanism has been tested using gedit, for which sixteen actions
were recorded. These actions consisted of opening the different menus in the application
by clicking on the menu and closing it by clicking the menu again. This yields seven
actions, for the menus ‘File’, ‘Edit’, ‘View’, ‘Search’, ‘Tools’, ‘Documents’ and ‘Help’.
For all of these actions, an alternative action was defined to open the menu the same
way, but closing it by clicking in an unrelated area in the application. The final two
actions were obtained by opening the ‘Help’ menu, selecting the ‘About’ item, and
closing the corresponding dialog box using the ‘Close’ button and closing with the ‘X’
button in the window decorator. This set of actions was specifically defined as series of
mouse events that cause a transition from a given state to itself over other states. For
example, the filemenu-open-close action exists of a mouseclick on the file menu, leading
to the expansion of the menu as a second state, followed by a second mouseclick on the
file menu causing the collapse of the menu returning to the initial state. This approach
allows randomization of the actions. For our experiments, we have created scenarios by
uniformly distributed random drawing of actions from this set.

30

40

50

60

70

F
re

q
u

e
n

cy
 (

%
)

0

10

20

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and first response (ms)

speculative traditional 

(a) no network latency

20

30

40

50

60

F
re

q
u

e
n

cy
 (

%
)

0

10

20

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and first response (ms)

speculative traditional 

(b) 50 ms network latency

Fig. 1: Comparison of first responses for the traditional thin client protocol and for the spec-
ulative display mechanism

Figure 1 shows the speedup in reactivity acquired by the speculative system in
comparison to the traditional thin client system. Figure 1(a) shows the impact when
no network latency is configured. Where the traditional system typically spends 30
to 50 ms to reply to a user event, the speculative display system provides an answer
within 10 ms. However, when no prediction can be made, 60 to 70 ms elapse, indicating
some overhead at the server side to compare frame buffer updates with the ones in the

Copyright c© The authors www.FutureNetworkSummit.eu/2013 3 of 4



cache. The contrast between the speculative display system and the traditional thin
client system is more apparent in Fig. 1(b), for which the results were obtained over a
network configured to exhibit a latency of 50 ms, resulting in a minimum RTT of 100
ms for the traditional system. Here, independent of the network latency, the speculative
display mechanism responds to the majority of the user events within 10 ms.

5. Conclusions
In this paper a server-centric network-latency mitigating mechanism is proposed, that
augments remote application rendering in the cloud by speculatively showing estimated
application output to the user, in spite of creating an impression for the user that the
underlying network latency does not influence the reactivity of the system. Besides
the presentation of the algorithms, necessary alterations to the traditional thin client
computing architecture are detailed. The experimental results show that the reactivity
of the system is spectacularly improved irrespective of the network latency present. The
algorithm at the viewer side is fairly simple, leading to speculative responses within 10
ms. The results also show that little overhead is induced by the system, both concerning
overhead synchronization messaging and server and viewer CPU load amounting to 2%
and 1% CPU load respectively.

As part of future research, we see opportunities to evaluate the impact of prediction
accuracy, which is not yet investigated in this work. Although the user might have the
impression that the application responds well, he might also be confused by incorrect
content on screen.

References
[1] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere, F. De Turck, B. Dhoedt,

and P. Demeester, “Bandwidth optimization for mobile thin client computing
through graphical update caching,” in Australasian Telecommunication Networks and
Applications Conference (ATNAC), pp. 385 – 390, December 2008.

[2] J. R. Lange, P. A. Dinda, and S. Rossoff, “Experiences with client-based speculative
remote display,” in USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ATC’08, (Berkeley, CA, USA), pp. 419–432, USENIX Association, 2008.

[3] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network
computing,” IEEE Internet Computing, vol. 02, no. 1, pp. 33–38, 1998.

[4] Microsoft Corporation, “Windows Remote Desktop Protocol (RDP).”
http://msdn2.microsoft.com/en-us/library/aa383015.aspx.

[5] M. Sumalatha, S. Sridhar, and G. Satish, “A novel thin client architecture with
hybrid push-pull model, adaptive display pre-fetching and graph colouring,” Inter-
national Journal of Ad hoc, Sensor and Ubiquitous Computing (IJASUC), vol. 3, pp. 67
– 77, june 2012.

Copyright c© The authors www.FutureNetworkSummit.eu/2013 4 of 4


