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Abstract—Real-data testing results of a real-time state estimator 

and predictor are presented with particular focus on the feature 

of enabling of detector fault alarms and also its relation to queue-

length based traffic control. A parameter and state 

estimator/predictor is developed by using particle filter. The 

simulation testing results are quite satisfactory and promising for 

further work on developing a hybrid model of traffic flow that  

captures the transition between low and high intensity. By using 

this hybrid model, it may be more feasible to achieve the 

significant feature of automatic adaptation to changing system 

condition. 

Keywords—particle filter; traffic flow; intelligent 

transportation system; estimation; fault detection 

I.  INTRODUCTION  

Excessive energy consumption and greenhouse gas (GHG) 
emissions are making changes to our living environment that 
will be damaging in the long term. Road traffic has been a 
major contributor to such changes. A realistic solution would 
be to improve fuel efficiency. High speeds, heavy acceleration 
and lack of anticipation in traffic have been identified as main 
causes of excessive emission production [1]. One of the 
problems of lack of anticipation is less coordination between 
intersections. An important aspect of traffic management for 
increasing coordination is signal control strategies. Generally, 
in Asia, signal control is the main strategy to enforce priority at 
junctions whereas in some European cities priorities rules and 
roundabouts are used more. The Asian cities have a much 
higher density than European cities. Clearly that geographical 
and cultural background will influence the success of any 
traffic management policies [2]. In this perspective, this paper 
studies the capability to estimate and to predict the variability 
of traffic flow which is one of the important issues for defining 
the performance of transportation management. The capability 

to accurately estimate and to predict of traffic flow has become 
more important for coordinating among intersections, 
especially to reduce congestion and to avoid the grid-lock 
phenomena over the urban network. By using coordination 
between local controllers of each intersection, the feasible 
planning to have efficient and effective dynamic traffic 
management system can be proposed. 

Many papers have proposed techniques to estimate and to 
predict the traffic flow  based upon time series analysis using 
time invariant linear state-space models [3],[4]. This method 
usually has a limited capability to characterize the 
inhomogeneous character of traffic flow. Therefore, it is 
necessary to develop traffic flow estimator/predictor technique 
which is working based upon a richer model such as time-
varying linear state-space in order to improve an accurate 
prediction of traffic flow variability. In this paper, we develop 
a real-time traffic joint parameter and state 
estimation/prediction in order to give valuable information for 
feedback control system of each local intersection. In this 
perspective, traffic flow estimator/prediction is an important 
parameter for feedback control and it can improve significantly 
the performance of control system of each local intersection. 

In realistic traffic model, states of the system cannot be 
assumed to be fully observed. In fact, vehicle sensor/detection 
is affected by errors. Moreover, only flows are detectable, 
while queues-length are undetectable. For real-time 
implementation, it is required that the estimator can be rapidly 
computed based on the measurement data. Moreover, the 
estimator should be based upon a dynamic and stochastic 
model to be able to include traffic-flow time-series and random 
fluctuations characteristic. 

Particle filter (PF) is flexible simulation based techniques 
that has become popular in optimal filtering for general model. 
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However, standard PF methods assume knowledge of the 
model parameters but in real application, the parameters are 
unknown and should be estimated. Optimal filtering with 
unknown parameters, especially in model with reasonably large 
number of parameters, remains a challenging problem. Many 
approaches have been proposed to solve this problem. 
Important development in this problem appears in [5] and [6]. 
A kernel approximation of posterior for parameter based on 
mixture of multivariate normal has been suggested in [5]. The 
approach is very attractive as it can be applied to any state-
space models but it may suffer from an accumulation error over 
time. In [6], it was  proposed that the posterior distribution of 
parameter depends on low dimensional set of sufficient 
statistics that can be recursively updated. Another approach 
was developed by [7] to estimate the parameters obtained by 
gradient-free maximum likelihood and sampling within particle 
filtering framework. This method uses the cost function and 
optimization framework and this leads to highly 
computationally load.  

In this paper, it is introduced a state and parameter 
estimation technique for stochastic feedback control problems. 
Moreover,  it is studied an estimator with the on-line model 
parameter estimation which gives significant features besides 
the opportunity to combine with feedback control. The paper 
presents a simple stochastic traffic flow model and a particle 
filter technique to estimate and to predict traffic flow.  

II. PROBLEM FORMULATION 

First, this section describes the fundamental of real-time 
traffic control system by showing in a simple case. 
Performance of the system is represented by the expected 
queue length and performed by using traffic flow measurement 
and phase data of the intersection. By using fluid-flow 
approach, traffic flow is considered as an important variable. 
Therefore, the accuracy of traffic flow in term of estimated 
traffic flow is crucial for defining the system performance.  

   Let assume that there is an intersection B as a general 
example case as shown in figure 1. At that intersection, let 
assume there are two phases, which consist of movement 

2L  

and 
4L  in phase-1 and movement 1L  and 3L  in phase-2. 

Figure 2 shows phasing information in more detail. In each 
approach direction of the major link, there are two groups of 
sensors to detect the vehicles/axles. In Link AB (link between 
intersection A and B), the first sensor is located few meters 
from intersection A in order to detect the arrival flow and the 
second is placed near the stop line of intersection B to count 
the departure flow.  Link CB has the same configuration. Let 

   tt ii  ,  be, respectively, arrival flow rate  sveh   and 

departure flow rate  sveh    in movement iL . Queue length 

movement i at time t is defined as the number of vehicles 

between the first sensor and the second sensor and it is denoted 
by  Qi (t) [veh]. 

   In this model, the cycle-time is in basic time-unit and let 

k  be index of the cycle. As mentioned above, the basic model 

is based on fluid-flow approach. The evolution of the queue-
length is given by the following equation  

     
t

t
ioii

o

dtttQtQ 
   (1) 
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Figure 1. Intersection with sensors location 

 



This queue-length evolution can be estimated by using the 

measurement of flow i . In the case of intersection B in 

movement L4, .444   where 44 /  is an 

arrival/departure flow rate which is a result of summation of 
the flows detected at sensors 02014/02010 and 02015/02012. 
In general, it should be noted that queue-length is not a 
measurable variable; therefore we need a dynamic estimator in 
order to know the queue-length evolution. In addition, in every 
measurement, we face the uncertainty/error in the data. The 
important phenomena that we have to consider in estimating 
queue-length is the existence of stop and go phenomena that 
can be considered as a discrete event system in terms of 
green/red switching times. 

   As shown in the figure 2, there are two decision variables 

 sTg  and  sTr  in each cycle, where gT  (green period) 

represents the duration time between switching times kt2 and 

12 kt  and rT  (red period) is between 12 kt and 22 kt . For 

each cycle, we want to determine these two decision variables 
to minimize the cost, such as the expected queue-length. 

The variability of flow rate i  during the cycle-time is an 

important factor in estimating and predicting the queue-length. 
This variability comes from the presence of platoons released 
by upstream traffic-light. In this paper, we use the fluid-flow 
approach, aggregate and average the number of vehicles during 
a certain period. It is also developed a stochastic model 
depends on some parameters which determine the 
characterization of the variability of traffic flow rate. By 
knowing these parameters through the on-line model parameter 
estimation, it is possible to achieve significant features such as 
automatic adaptation to changing system condition and 
enabling of detector fault alarms etc. Standard estimator 
methods assume knowledge of the model parameters which are 
unknown in real application but the parameters should be 
estimated. Dealing with unknown parameter to perform 
optimal filtering, especially in model with reasonably large 
number of parameters remains, is a challenging problem. In 
this paper, we combine particle filter based approach, kernel 
smoothing and gradually reduce technique. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Signal Traffic Sequence 

III. PARTICLE FILTER (PF) 

State estimation can be seen as an optimal filtering within 
Bayesian framework. The well known method in this approach 
is standard particle filter (PF) that solves estimation by 
reconstructing the probability distribution of the state vector 
conditional on all available measurements. The approximation 
of particle filter is much different from that of conventional 
filters. By approximating a continuous distribution of any form 
by a finite large number (N) of weighted random 
samples/particles in the state space then PF has no functional 
form for the posterior probability distribution. To determine 
how closely the particles match the measurements, generally, 
the particles are propagated through dynamic model and then 
weighted according to the likelihood function. Those that best 
match the measurements are multiplied and those that do not 
are discarded. The particles are randomly sampled from an 
importance function and the importance weight associated with 
each particle is determined based on the ratio between the 
posterior pdf and importance function. 

A. PF for state estimation 

Suppose the system is given by the following state and 
measurement equation: 

 
11 


kkk ttt xfx 

      

 
kkk ttt xhy 

    (2) 

where x

k

n

tx   and z

k

n

ty  are state and measurement 

at time instant k , respectively, 

f : xx nn
 and h : zz nn

 are known 

mappings, 
1kt

 and 
kt

 are state and measurement white 

noises, described by known probability density function’s 

(pdf)  
1kt

p  and  
kt

p , respectively. The noises are 

mutually independent and independent of initial condition of 

the state 0x given by a known  0xp . 

The filtering problem means looking for an estimate of the 

state 
ktx based on the measurements up to the time instant k , 

which will be noted as  kt

k yyyyy
k

,...,, 10:1  . Due to 

the stochastic nature of the system, the state is a random 

variable described by the conditional pdf  k

t yxp
k

. We will 

not discuss PF algorithm in detail here. Tutorial paper by [11] 
provides very good introduction to study PF. 

B. PF for parameter and state estimation 

In this section,  we develop and discuss the extension of PF for 

parameter estimation which is a non-trivial problem.The 

conventional strategy is to add a random walk to the 

parameters and then to augment the state-space with the 

parameters for joint estimation. In this strategy, however, the 

use of a random walk implies an increase in the covariance of 
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the parameters. This implication will make the posteriors more 

diffuse than the actual ones. A natural approach in reducing 

the covariance is to use kernel smoothing with smoothing 

factor. Kernel smoothing is a flexible approach to handle both 

fixed and time-varying parameters [5].  

 

If both states and parameters are to be estimated, joint 

posterior distribution can be defined by using Bayes’s rule: 

 

       
11 :1:1 ,,,



kkkkkkkkkkk ttttttttttt ypxxpxypyxp 

 
It is clear by now that we need to deal with the problem of not 

knowing the form of the joint density  
1:1 kk tt yp   in order 

to obtain posterior joint information about states, 
ktx and 

parameters, .
kt

 Joint state and parameter estimation is 

achieved through the augmentation of the state-space with the 

parameter vector: 
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   kttt txhy
kkk

  ,
                                                     (3) 

In this perspective, the on-line filtering is formulated as a 

problem of sequentially estimating states and parameters of 

the new system when the new observation are obtained. The 

ultimate aim of the estimation is to infer their posterior 

probability density function.  Specifying unknown parameters 

by Gaussian random walk model enable their adaptation to the 

new data: 

 

kkk ttt  
1                            (4) 

Where  kt WG
k

,0~  is Gaussian zero-mean distribution 

and predifined covariance. In [8], it has been identified that 

the random walk implies an increase in the covariance that 

causes the posterior more diffuse than the actual ones. 

We can approaximate  1:1 kt yp
k

   by mixture of particles: 

   


 
N

i

k

i

k

i

kkt WGwyp
k

1

1111:1 ,;
                           (5)

 

The distribution in equation above has a mean of 
kt   and 

covariance kk WV 1 . It means that the covariance increase 

over time as a consequence of the random walk. In [5], it was  

proposed kernel smoothing with smoothing factor  01  h  

to reduce the covariance: 

   1

2

1

1

11:1 ,; 



  k

i

k

N

i

i

kkt VhmGwyp
k


                     (6)

 

The kernel location 
i

km 1  is used to force the particles to be 

closer to their means: 

    1
2

1

2

1 111   k
i

k

i

k hhm 
                  (7)

 

This method may suffer from an accumulation error over time 

and it has been proved in traffic flow prediction that the 

parameter and state do not achieve the convergence. To handle 

this problem, we use Gradually Reduce (GR) factor instead of 

Kernel factor proposed in [9] and   1:1 kt yp
k

   is then 

changed to: 

   k

i

k

N

i

i

kkt WkGwyp
k

 





  ,; 1

1

11:1

          (8) 

where 0<  < 1 is GR factor.This factor can take less restraint 

on noise covariance at the initial stage so as to value of 

parameter estimation can access to true value sufficiently and 

take great restraint on noise covariance at the transition stage 

so as to stabilize the value of estimated parameter. In addition, 

this method needs not to compute Monte Carlo covariance 

which means less computational load [9]. 
 

The basic state estimation algorithm is described as follow: 

 Initialisation: the random samples (particles)  

  Niixt ,.....1:
0

  are drawn from the pdf  
0t

xp . 

 Repeat the following steps for each time 

instant  .....2,1kk . 

Step 1: Draw N samples   Nii
kt

,.....1:
1




  from the pdf 

of system noise. 

 

Step 2:  Generate N samples (particles) 

  Niix
kk tt

,.....1:
1




 which approximate the predictive 

distribution  1k

t yxp
k

 via state equation (2). 

Step 3: On receipt of measurement
kt

y , compute the 

importance weights associated with each predictive samples or 

particles by: 

    ixypi
kkkk tttt 1|

~


   

and  

 

 



N

j

t

t

t

j

i

k

k

k

1

~

~




  Ni ,...,2,1  

This results in the posterior pdf   k

t yxp
k

 being represented 

in terms of weighted samples or particles  

 

    Niiix
kkk

ttt
,...,2,1:,

1



  



Step 4: Obtain N particles   Njjx
kt

,.....1:   by the re-

sampling of   Niix
kk tt

,.....1:
1




 with sampling 

probabilities satisfying: 

      iixjx
kkkk tttt 

1|Pr  for Nj ,....2,1  

This results in the posterior pdf  k

t yxp
k

 being represented 

in terms of weighted particles   NjNjx
kt

,.....1:, 1 
. 

 

The re-sampling in step 4 is introduced in order to select the 

fittest samples so as to avoid the problem of sample 

degeneracy and is carried out using systematic re-sampling 

algorithm developed in [10]. It is important to keep in mind 

that for the combined state and parameter estimation, the state 

variables change to become the augmented state variables as 

noted in equation (3). By using this consideration, the 

algorithm is able to perform states and parameters estimation 

simultaneously. 

C. PF for prediction 

Based on the filtering distribution  
kkk ttt yxp :1,  , we 

could predict the p step-ahead pdf: 

      1:1 1:1:1:1 ,, 



  pkk

pk

kj jjttttttt dxxxpyyxpyxp
kkkkpkpkpk



 The detailed can be seen in paper [11]. 

IV. THE DATA ANALYZED AND SIMULATION RESULTS 

The traffic data for analysis are the discrete time-series of 
traffic flow recorded at every 15 minutes during Monday, 11st 
of June 2012 until Friday, 15th of June 2012. The data are 
taken from 00-24 pm in city of Bandung, Indonesia. The 
measurement data are used to validate the traffic flow 
estimator/predictor. The data were taken by using a video 
sensor. 

In figure.3, the pattern of traffic flow during the workdays 
shows that there is a similarity pattern. On Friday between 12 
am-14 pm, the flow pattern is decreasing. This fact comes from 
that in the duration, Indonesian people go to Mosque for Friday 
prayer. But the rest, the pattern of flow is a similar. On 
Tuesday between 14-15 pm, there is also jump down with 
unknown reason. 
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Figure 3 Observed Traffic Volume during weekdays  

In this simulation study, we use measurement data only on 
Tuesday to know the performance of state and parameter 
estimator/prediction PF against jumping phenomena. For better 
explanation, we rewrite equation (1) with slight modification 
by considering only for the traffic flow. It should be noted that 
t  is sampling time update every 15 minute. 

State Equation and measurement equation:   

           tcttbttat x   1                       (9) 

     ttty y    

Where     1000,0~ Ntx  ,    1600,0~ Nty  , 

00   , with particle number N=100, 500 and 5000. GR 

factor   for parameters 3.0a , 5.0b  , 5.0c  

Figure 4 shows that the estimator is able to precisely make 
real time estimation except during 0-6 am. The reason for this 
fact is that the PF estimator works with assumption that 
variance sensor is constant for 24-h period. It is quite 
unrealistic assumption due to that for variance of the video-
type sensor usually depends on the intensity of flow.  

Results of the prediction are shown in Figure 5 which are 
good enough in the real-time perspective, although that during 
6-7 am there is big difference between prediction and 
observation/measurement. However, this is a good indication 
that we may need another model which has  2-3 modes/regime 
such as hybrid system. Because there is a big jump in the 
intensity of flow between (0-6am) and (6-18pm). Using this 
issue, the PF algorithm should include transition probability 
among the modes in the PF algorithm 
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Figure 4 Estimated flow versus observed flow 
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Figure 5 Predicted flow versus observed flow 



To examine the performance of estimator/predictor against 
the fault alarms, the same measurement data on Tuesday during 
15-16 pm are set to zero in order to simulate fault alarms in 
case of strong detector/sensor malfunction. From Figure 6, it 
looks that the estimator can handle these fault alarms although 
the transition took one hour to become convergence and the 
predictor took longer time than estimator. Both predictor and 
estimator can maintain the convergence. This predicted flow 
results is quite promising to be combined with stochastic model 
predictive control along with phase data in case of signalized 
intersection to reduce the expected queue-length. Figure 7 
shows in case of strong detector malfunction, the estimator has 
a capability to adjust its model parameters radically (see 
parameters in equation (9)). Hence, the on-line model 
parameter estimates may also be used as an indicator for 
serious detector malfunction. 
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Figure 6 Estimated and Predicted flow against fault alarm 
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Figure 7 Changing of Estimated Parameter due to sensor malfunction 

V. CONCLUSIONS 

The real data were reported in this paper to evaluate the 
performance of parameter and state estimation/predictor. The 
results demonstrated that the traffic flow estimator and 

predictor have interesting two features of enabling of: (a) 
detector fault alarm and (b) automatic adaptation to changing 
system condition.  The further work is needed to improve the 
quality of adaptation to changing system condition especially 
to use hybrid model instead of time varying linear state-space 
model. The predicted flow results are also promising for the 
development of efficient controller to reduce queue-length in 
signalized intersection. 
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