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Summary. Reduced order models obtained by model or-
der reduction methods must be accurate over the whole fre-
quency range of interest. Multipoint reduction algorithms
allow to generate accurate reduced models. In this paper,
we propose the use of reflective exploration technique for
obtaining the expansion points adaptively for the reduction
algorithm. At each expansion point the corresponding pro-
jection matrix is computed. Then, the projection matrices
are merged and truncated based on their singular values to
obtain a compact reduced order model.

1 Introduction

Electromagnetic (EM) methods are used for the anal-
ysis of complex high-speed systems and usually gen-
erate very large systems of equations. Therefore, model
order reduction (MOR) techniques are crucial to re-
duce the complexity of large scale models and the
computational cost of the simulations, while retain-
ing the important physical features of the original sys-
tem [1–3]. Multipoint MOR methods have been de-
veloped over the years [1,4,5], which allows to gener-
ate accurate reduced models over the whole frequency
range of interest. In this paper, the expansion points
are selected adaptively using a reflective exploration
technique. It is a selective sampling algorithm, where
the model is improved incrementally using the best
possible data at each iteration, allowing it to propose
candidate exploration points [6]. An error-based ex-
ploration is performed to find the expansion points.
After obtaining the expansion points, the correspond-
ing projection matrices are computed using any of the
Krylov based MOR techniques. The projection matri-
ces are then merged and truncated based on their sin-
gular values to obtain a compact reduced order model.
Then the reduced order models are obtained by con-
gruence transformation using the truncated projection
matrix. The technique is validated using a multicon-
ductor transmission line example.

2 Projection Matrix

For this paper, the PRIMA algorithm [3] has been
used for obtaining the projection matrices at the ex-
pansion points.

For n expansion points we obtain the correspond-
ing projection matrices Vqi for i = 1,2, . . . ,n, then the

common projection matrix is defined as:

Vcomm = [Vq1 Vq2 . . . Vqn ]. (1)

The common projection matrix is not truncated
using its singular values during the iterative procedure
of the adaptive reflective exploration. It is truncated
after all the expansion points have been adaptively
chosen using reflective exploration.

3 Reflective Exploration

The reflective exploration requires a reflective func-
tion to select the expansion points. The reflective
function used for the proposed algorithm is the root
mean square (RMS) (2) error between the obtained
best models:

Err(I)est =

√√√√∑
Ks
k=1 ∑

Pin
i=1 ∑

Pout
j=1
|HI,(i j)(sk)−HI−1,(i j)(sk)|2

|HI,(i j)(sk)|2

PinPout Ks
(2)

where, Ks, Pin and Pout are the number of frequency
samples considered on a dense grid, input and out-
put ports of the system, respectively. The exploration
consists of an adaptive modeling loop and an adaptive
sampling loop.

1. Adaptive Modeling Loop: The algorithm starts
with two expansion points selected at [ωmin,ωmax]
of the frequency range of interest. The reduced
order q at these points is equal to the number of
ports of the system. Then with a common projec-
tion matrix as explained in Section 2, the reduced
model is obtained. Then in the next iteration again
the projection matrix is computed for a reduced
order equal to two times the port of the system. If
the RMS error between the two best models (i.e.,
the model obtained in the Ith and the (I − 1)th

iteartion) exceeds a certain threshold, then the re-
duced order q is again increased by the number of
ports for the respective expansion points.

2. Adaptive Sampling Loop: When the difference in
RMS error between the Ith and (I− 1)th, is less
than 10%, a new expansion point is selected. For
selecting the new expansion point the error per
frequency is computed by taking the norm L2, of
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Fig. 1. Flowchart 1: Reflective Exploration.

Fig. 2. Flowchart 2:Truncation of the projection matrix.

the frequency response of the best model (HI) and
the original model (Hact ):

Errsk = norm(Hact,(i j)(sk)−HI,(i j)(sk));
k = 1, . . . ,Ks, (3)

and the frequency at which Errsk is maximum is con-
sidered as the new expansion point.

This process is iteratively repeated until the RMS
error between the original frequency response and the
reduced model is 0.001. Figure 1 shows the reflective
exploration algorithm.

4 Model compacting

After obtaining the best reduced order model from
the iterative procedure, it might be possible to fur-
ther compact the model with the information obtained
from the singular values Σ of Vcomm (1). Figure 2
shows the flowchart for the truncation of the singular
values. The projection matrix Qcomm with congruence
transformation gives the reduced state-space matrices
of order qcomm.

5 Numerical Results

A multiconductor transmission line described by an
original state-space of order 1202 and 4 ports is con-

Fig. 3. Magnitude of Y11.

sidered. As described in Section 3, 4 expansion points
are chosen adaptively. Table 1 gives the dimension of

Table 1. Dimension of the Original and Reduced Model.

Models Dimension

Original 1202
Model after reflective exploration 64
Model after compacting 42

the reduced models. The reduced model after trunca-
tion has an RMS error of 4.128e− 4 when evaluted
over a dense grid of Ks = 200 frequency samples as
shown in Figure 3.
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