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Abstract —
This paper studies the weak scaling behavior of

the parallel computation of the translation opera-
tor in the three-dimensional (3D) Multilevel Fast
Multipole Algorithm (MLFMA). First, two algo-
rithms and their serial complexities are investigated.
Then, the parallelization of these two algorithms and
the arising issues regarding the complexity are dis-
cussed.

1 INTRODUCTION

To solve Maxwell’s equations the Method of Mo-
ments (MoM), combined with the Multilevel Fast
Multipole Algorithm (MLFMA), can be used. The
MLFMA relies on Gegenbauer’s addition theorem,
which factorizes the Green’s function into L+1 mul-
tipoles, allowing the interactions between the dis-
cretized segments of the MoM to be described by
means of radiation patterns and translations [1].
The subject of interest in this paper is the trans-

lation operator of the MLFMA in three dimensions
(3D). In the 3D-MLFMA the translation operator
is

T (~k, ~RT ) =
L
∑

l=0

(−j)l(2l+ 1)h
(2)
l (kRT )Pl(cos(θT ))

(1)

with

θT = arccos
(

~1k ·~1RT

)

(2)

Pl(.) and h
(2)
l (.) stand for the Legendre polynomial

and spherical Hankel function of the second kind
of order l respectively. ~RT is the translation direc-
tion, while ~k denotes a vector in the k-space of the
radiation pattern.
Fig. 1 shows a radiation pattern that is uniformly

sampled in the θ- and φ-directions. The sampling
rate of each dimension is of the order of L, hence the
time and memory complexities for the calculation
of a radiation pattern are O(L2).
The translation has a rotational symmetry axis,

which is determined by ~RT , and therefore it de-
pends only on θT and not on φT (see Fig. 2). The
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sampling rate of the θT -direction is also O(L) and
for each θT -sampling point L + 1 multipoles have
to be computed. Therefore the computation of a
translation operator requires O(L2) number of op-
erations.

For each level one goes up in the MLFMA-tree,
the value of L increases approximately by a factor of
two. In that case, the size of a radiation pattern and
the number of operations to calculate a translation
grows roughly by a factor of four.

In order to be able to perform larger MoM-
MLFMA simulations, multiple CPU cores can be
employed. A parallel algorithm can be assessed by
means of its “weak” scaling behavior when both
the problem size N and the number of processes
P are proportionally increased. An algorithm with
a serial complexity of O(C(N)) is weakly scalably
parallelized when the complexity of each individual
process is not higher than O(C(N)/P ) or, equiva-
lently, O(C(N)/N), as P = O(N).

A scalable parallel matrix-vector multiplication
in the 3D-MLFMA can be achieved using the so-
called Blockwise Hierarchical Partitioning Scheme
(B-HiP). When going one level up in the MLFMA-
tree that uses the B-HiP, the number of partitions P
is increased by a factor of four [2] and each partition
is assigned to an individual process. Hence, P is of
the order of L2, just like the radiation pattern and
the translation operator. The blockwise partition-
ing of a radiation pattern is shown Fig. 1. Both the
θ- and φ-direction are divided in

√
P parts, hence

the length of the θ- and φ-range per partition are
O(1), i.e. independent of L. As a result, the size
of each radiation pattern partition does not exceed
O(1) [3].

2 CALCULATION OF THE TRANSLA-

TION OPERATOR

The values of T (~k, ~RT ) have to be calculated in each
sampling point of the radiation pattern. This paper
discusses two methods: the direct calculation of the
translation and the calculation of the translation
using interpolations.
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Figure 1: Blockwise partitioning of a uniformly
sampled radiation pattern. The green dots denote
the sampling points, the black lines correspond to
the different partitions.

2.1 Direct method

The most direct computation of the translation op-
erator is to evaluate expression (1) in every radia-
tion pattern sampling point. However, this requires
O(L3) number of operations, as the size of a radia-
tion pattern is O(L2) and (1) contains a summation
of the contributions of the L+ 1 multipoles.

2.2 Interpolation method

An alternative method is to make use of local inter-
polations [4] that use for instance Lagrange poly-
nomials [5]. First, (1) is computed in every θT -
sampling point. To perform this step O(L2) num-

ber of operations are needed. Then, T (~k, ~RT ) is cal-
culated in each sampling point of the radiation pat-
tern, employing a local interpolator. As the num-
ber of required neighboring sampling points does
not exceed O(1), this step also has a complexity
of O(L2). As a result, the calculation of a trans-
lation can be performed with a time complexity of
O(L2). Therefore, this method is superior to the
direct method from a complexity point of view.

3 PARALLELIZATION

In this section the parallelization of the two meth-
ods, discussed in the previous section, is investi-
gated. Both the problem size N , i.e. the size of the
radiation pattern and the complexity of the trans-
lation operator, and the number of partitions P are
O(L2). The objective of the parallel algorithm is

~RT

θT φT

Figure 2: Representation of the translation opera-
tor. The translation is axis-symmetrical (i.e. inde-
pendent of φT ) and depends only on θT .

to calculate the value of T (~k, ~RT ) in each sampling
point of the partition of the radiation pattern.

3.1 Direct method

As mentioned above, the size of each radiation pat-
tern partition is O(1) and for each evaluation of
(1) a series of L+1 contributions needs to be com-
puted. As a result, the complexity of this parallel
algorithm is O(L).

The described algorithm is indeed a scalable par-
allelization of the direct method, but of course it is
not a scalable way to calculate the translation oper-
ator, as the direct method does not yield the lowest
possible complexity to compute a translation.

3.2 Interpolation method

The parallelization of the first step of the interpo-
lation method is straightforward. Both the mul-
tipoles and the θT -sampling points can be parti-
tioned in a blockwise way, similar to the blockwise
partitioning of the radiation pattern, depicted in
Fig. 1. This means that the L + 1 multipoles and
O(L) θT -sampling points are divided in

√
P parts.

Each partition of the translation containsO(1) mul-
tipoles and O(1) θT -sampling points, resulting in a
O(1) complexity per translation partition.

In order to obtain a O(1) complexity per trans-
lation partition, it is essential to be able to com-
pute Hankel functions and Legendre polynomials of
an arbitrary order l in O(1) operations. Recently,
such a method for the Legendre polynomials has
been developed [6]. The Hankel functions can be



evaluated with an O(1) complexity using the Amos
libraries [7].

In the second step, the local interpolations have
to be performed in the sampling points of each
partition. The number of neighboring θT -points is
O(1), as is the size of a radiation pattern. Therefore
this step also has a complexity of O(1).

However, in order to execute the local interpo-
lation, the required θT -sampling points have to be
communicated. From Fig. 1 one can see that the
sampling points of a radiation pattern accumulate
at the poles. As a result, some θT -sampling points
need to be communicated to more radiation pattern
partitions than others, in order to do the interpola-
tion. Consequently, the translation partitions that
contain these θT -points need to send their data to
more radiation pattern partitions. This can endan-
ger the weak scalability of the parallelization if the
communication complexity is higher than O(1).

4 DISTRIBUTION

In the previous section we saw that the communica-
tion step in the parallelization of the interpolation
method is strongly dependent on the orientation of
the translation direction ~RT with respect to the z-
axis of the radiation pattern. If the azimuth angle
of ~RT is αT , then the poles of the radiation pattern
correspond to θT = αT and θT = π − αT in the
coordinate system of the translation.

The distribution of the radiation pattern sam-
pling points as a function of θT shows how many
times a particular θT -sampling point and its neigh-
boring sampling points are needed for the local in-
terpolation. As an example, αT = π/4 is consid-
ered and L is set equal to 300. The sampling rates
of the θ-, φ- and θT -direction are chosen equal to
Nθ = L+1, Nφ = 2L+4, NθT = 4L+8. The distri-
bution of the radiation pattern sampling points as a
function of θT is shown in Fig. 3. The distribution
is normalized such that

∫ π

0
f(θT )dθT = 2π2, as θ

ranges from 0 to π and φ from 0 to 2π. As one can
see, the two peaks of the distribution, which cor-
respond to the radiation pattern sampling points
at the poles, are indeed located at θT = αT and
θT = π − αT .

The shape of the distribution shows that the
communication of the θT -sampling points is very
unbalanced for the different translation partitions,
which can endanger the weak scalability of the par-
allelization of the interpolation method. Further
research aims at solving this problem.
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Figure 3: Normalized distribution of the radiation
pattern sampling points as a function of θT for
αT = π/4 and L = 300.

5 CONCLUSION

In this paper the parallelization of the calculation
of the translation operator in the 3D-MLFMA and
its weakly scaling behavior is studied. First, two se-
rial algorithms to compute the translation operator,
the direct method and the interpolation method,
are discussed. The direct method has a complexity
of the order of L3, while the interpolation method
requires only O(L2) operations. Then, the paral-
lelization of these two methods is considered. In
case of the direct method, a straightforward parti-
tioning yields a O(L) complexity per process. For
the interpolation method however, the communica-
tion complexity is strongly dependent on the trans-
lation direction, which determines the distribution
of the radiation pattern sampling points as a func-
tion of θT . From the shape of the distribution one
can deduce that the communication is unbalanced,
which makes the development of a weakly scalable
parallel computation of the translation a challeng-
ing problem, needing further research.
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