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Abstract. An intrinsic characterization is given of the concept of linear connection
along the tangent bundle projection τ : TM → M . The main observation thereby is
that every such connection D gives rise to a horizontal lift, which is needed to extend
the action of the associated covariant derivative operator to tensor fields along τ in a
meaningful way. The interplay is discussed between the given D and various related
connections, such as the canonical non-linear connection of the geodesic equations
and certain linear connections on the pullback bundle τ∗τ . This is particularly
relevant to understand similarities and differences between various notions of torsion
and curvature. I further discuss aspects of variationality and metrizability of a
linear D along τ and let me guide for the selected topics by a very short, old paper
of Krupka and Sattarov.

1 Introduction

On the occasion of celebrating a scientist’s 65th birthday, it is respectable to look back
at the history of the person’s involvement in science and it is definitely a good sign if
one can easily detect older work which still raises interesting questions or challenges. I
recently laid my hands on what is in fact a rather minor contribution of Demeter Krupka
[10], also one of the first reprints he gave me personally, and I was astonished to see that,
looking at it now, it confronts me with questions I had not thought of before, even though
they are directly related to my own research of the past 10 to 15 years.

Section 2 in [10] carries “connections on the tangent bundle” in the title, but is about
maps from a tangent bundle TM into the fibre bundle ΓM → M of linear connections on
M , which make the following diagram commutative:

-
?

�
�

�>

�
��

D

TM

ΓM

Mτ
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In my opinion, the concept of a ‘connection on a manifold’ has an unambiguous meaning
in the literature, and that is not what the above diagram is about. Instead, a much
better name for the D under consideration here is linear connection along the tangent
bundle projection. The surprising observation for me, however, is that, having been
involved in the development of a comprehensive theory of derivations of forms along the
tangent bundle projection in [15, 16], and having made use of the calculus along τ in
many applications since then, the idea of such a linear connection along τ never came
up. Needless to say, other types of connections frequently play a role in my use of the
calculus along τ , such as what are called linear connections on the pullback bundle τ ∗τ :
τ ∗TM → TM , so it becomes intriguing to understand the difference or interplay between
all such related, but different concepts. What is more, it turns out that (to the best of
my knowledge) not much can be found in the literature about linear connections along
τ and what is available all seems based on (sometimes rather untidy) ad hoc coordinate
constructions, i.e. seems to lack a proper coordinate-free foundation. For example, going
back to section 2 of [10] again, if (q, v) is taken as notation for coordinates on TM and
γi

jk(q, v) are connection coefficients of D, the authors state, as though it should be common
knowledge, that geodesics are curves in M , satisfying the equations

q̈k + γk
ij(q, q̇)q̇

iq̇j = 0, (1)

and that there is a covariant derivative operator for tensor fields along τ , “defined in a
standard manner”, which in the case of a metric tensor g along τ is given by

gij;k =
∂gij

∂qk
− ∂gij

∂q̇s
γs

rkq̇
r − gimγm

jk − gjmγm
ik . (2)

But is that common knowledge? It seems to me that the term ‘geodesic’ should be used
only if there is a clear notion of parallel transport first, leading subsequently to geodesics
as auto-parallel curves. This, plus a coordinate-free backing for the “standard manner” in
which gij;k should be defined, I was unable to find in the literature on which the statements
in [10] must have been based.

Linear connections along τ were probably introduced for the first time by Hanno Rund,
who called them “direction-dependent connections” [21]. Unfortunately, what is probably
a comprehensive account of Rund’s involvement in this theory, seems to have appeared
only in extra chapters of the Russian translation (by Asanov) of his book on Finsler
spaces (see the Math. Review MR0641695 (83i:53097)). So probably, the best source
now (for illiterates in Russian) is Appendix A of Asanov’s own book [4]. There, one will
find corresponding concepts of torsion, curvature, Bianchi identities, etcetera explained.
The torsion tensor, for example, is defined as having components γk

ij − γk
ji, as one might

expect, and the components of the curvature tensor are given by(
∂γk

ij

∂ql
−

∂γk
ij

∂vm
γm

rl v
r

)
−
(

∂γk
il

∂qj
− ∂γk

il

∂vm
γm

rjv
r

)
+ γk

mlγ
m
ij − γk

mjγ
m
il . (3)

But although an attempt is made to construct such tensors in an intrinsic way, the result is
rather unsatisfactory for several reasons: to begin with, objects which should be regarded
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as living along the tangent bundle projection are often subjected to operations (such as
an exterior derivative) which act on the full tangent bundle; the result then is usually not
a tensor along τ ; this in turn prompts the author to add corrective terms in a rather ad
hoc manner, in order to arrive at a quantity with a proper tensorial meaning. Observe for
later that such corrections always involve derivatives with respect to the fibre coordinates
vi on TM .

My aim is to shed a refreshing light on all such concepts by making use of the calculus along
τ in a systematic way. This will lead to new questions which cannot all be exhaustively
discussed in the course of the present paper. In selecting topics for discussion, therefore,
I will let the further aspects treated in Krupka’s paper [10] be my guidance.

It is unfortunate that the literature is full of rather strange terminology for things which
are (closely or not) related to the topics under consideration here. The point is that in all
such cases, the issue is about tensor fields along τ and operations on them, which have
not been properly identified or recognized as such. In [2], for example, it is mentioned
that what I would call objects along τ are sometimes called d-objects, or M -objects, or
even Finsler objects (though they have nothing whatsoever to do with Finsler spaces). I
dare hope that the present paper can inspire to more unification in this terminology as
well.

2 Elements of the calculus of forms along τ

Let X (τ) denote the C∞(TM)-module of vector fields along τ , which are maps fitting
in a similar commutative diagram as above, with TM replacing ΓM , or equivalently are
sections of the pullback bundle τ ∗τ : τ ∗TM → TM . Likewise,

∧k(τ) and V k(τ) will refer
to scalar and vector-valued k-forms along τ respectively.

In coordinates, elements X ∈ X (τ) and α ∈
∧1(τ) are of the form,

X = X i(q, v)
∂

∂qi
, α = αi(q, v) dqi, (4)

while, more generally, an element L ∈ V `(τ) is of the form

L = λi ⊗ ∂

∂qi
with λi = λi

j1···j`
dqj1 ∧ · · · ∧ dqj` ∈

∧`(τ), (5)

where the λi
j1···j`

again are functions on TM .

Definition: D :
∧

(τ) →
∧

(τ) is a derivation of degree r if

1. D(
∧p(τ)) ⊂

∧p+r(τ)

2. D(α + λ β) = Dα + λ Dβ, λ ∈ IR

3. D(α ∧ γ) = Dα ∧ γ + (−1)prα ∧Dγ, α ∈
∧p(τ).
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A derivation D of degree r of V (τ) has an associated derivation of
∧

(τ), also denoted by
D, such that in addition to the above rules: for L ∈ V `(τ) and ω ∈

∧p(τ),

D(ω ∧ L) = Dω ∧ L + (−1)prω ∧DL.

For practical purposes, it is of interest to know that every D of
∧

(τ) is completely
determined by its action on functions on TM and on basic 1-forms, i.e. 1-forms on M
regarded as 1-forms along τ by composition with τ . For an extension to V (τ), it suffices
to specify a consistent action on basic vector fields (vector fields on M).

The commutator of D1 and D2 (of degree r1 and r2 respectively) is the degree r1 + r2

derivation, defined by

[D1, D2] = D1 ◦D2 − (−1)r1r2D2 ◦D1, (6)

and satisfies a graded Jacobi identity.

There is a canonically defined vertical exterior derivative dV on V (τ). In the light of what
was said above, it suffices to know that

dVF = Vi(F ) dqi, with Vi =
∂

∂vi
, ∀F ∈ C∞(TM), (7)

dVα = 0 for α ∈
∧1(M), dV

(
∂

∂qi

)
= 0. (8)

The classification of derivations of forms along τ and many related issues were discussed
in great detail in [15, 16]. I shall limit myself here to recalling the essentials of this theory
which will be needed further on. The first point to observe is that a classification requires
the availability of a (non-linear or Ehresmann) connection on τ : TM → M . As a matter
of fact, any choice of a connection, giving rise to a local basis of horizontal vector fields

Hi =
∂

∂qi
− Γj

i (q, v)
∂

∂vj
, (9)

allows to construct a horizontal exterior derivative dH as follows:

dHF = Hi(F ) dqi, F ∈ C∞(TM), (10)

dHα = dα for α ∈
∧1(M), dH

(
∂

∂qi

)
= Vi(Γ

k
j ) dqj ⊗ ∂

∂qk
. (11)

Inspired by the standard Frölicher and Nijenhuis theory of derivations of (scalar) forms
[8], one is then led to distinguish four types of derivations.

• Type i? derivations are those which vanish on functions; they are determined by
some L ∈ V (τ), written as iL, and defined exactly as in the standard theory. That
is to say, for L ∈ V r(τ), α ∈

∧1(τ),

iLα(X1, . . . , Xr) = α(L(X1, . . . , Xr)),

which extends to a derivation of degree r − 1 on scalar forms, and is taken to be
zero also on basic vector fields.
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• Type dV
? derivations are those of the form dV

L = [iL, dV] for some L.

• Likewise, type dH
? derivations are those of the form dH

L = [iL, dH].

• Finally, the extension to vector-valued forms requires an extra class of derivations,
said to be of type a?. By definition, these vanish on

∧
(τ), they are denoted as aQ

for some Q ∈
∧r(τ)⊗ V 1(τ) and (in view of what has been said before) are further

completely determined by the following action on X ∈ X (τ):

aQX(X1, . . . , Xr) = Q(X1, . . . , Xr)(X). (12)

The classification theorem proved in [15] states that every derivation of V (τ) has a unique
representation as the sum of one of each of the above four types of derivations.

The torsion T and curvature R of the non-linear connection we started from, make their
appearance within this theory as vector-valued 2-forms along τ (as opposed to vertical-
vector-valued semi-basic forms on TM in other approaches, for example). In fact, T and
R are uniquely determined by the following commutators on

∧
(τ) (extra terms of type

a? come in when the same commutators are regarded as derivations on V (τ)):

[dH, dV] = dV

T , 1
2
[dH, dH] = −idVR + dV

R. (13)

In coordinates,

T = 1
2
T k

ij dqi ∧ dqj ⊗ ∂

∂qk
, T k

ij = Vj(Γ
k
i )− Vi(Γ

k
j ), (14)

R = 1
2
Rk

ij dqi ∧ dqj ⊗ ∂

∂qk
, Rk

ij = Hj(Γ
k
i )−Hi(Γ

k
j ). (15)

A concise formulation of Bianchi identities then is obtained as follows:

dHR = 0, dHT + dVR = 0. (16)

The connection we are using to develop these ideas of course also provides ways to pass
from objects along τ to objects on the full tangent bundle and vice versa. This really
works both ways: for example, if X = X i(q, v)∂/∂qi is any vector field along τ , we have
vertical and horizontal lifts to vector fields on TM , which in coordinates are given by

XV = X i Vi, XH = X i Hi, (17)

but conversely, every vector field on TM has a unique decomposition into a horizontal and
vertical part and this may reveal new interesting objects along τ . To see this interplay at
work, consider the brackets of horizontal and vertical lifts on TM . We have

[XV , Y V ] = ([X, Y ]
V
)V , (18)

[XH, Y V ] = (DH

XY )V − (DV

Y X)H, (19)

[XH, Y H] = ([X, Y ]
H
)H + R(X, Y )V . (20)
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We see, for example, that the decomposition of the bracket of a horizontal and a vertical
lift inevitably leads to the identification of two important derivations of degree zero, the
horizontal and vertical covariant derivative: DV

X and DH
X depend linearly on their vector

field argument, are determined by the following action on functions F ∈ C∞(TM) and
coordinate vector fields

DV

XF = XV (F ), DV

X

∂

∂qi
= 0, (21)

DH

XF = XH(F ), DH

X

∂

∂qi
= XjVi(Γ

k
j )

∂

∂qk
, (22)

extend to 1-forms along τ by the duality rule

D〈X, α〉 = 〈DX, α〉+ 〈X, Dα〉, (23)

and then further to arbitrary tensor fields along τ in the usual way. The other two brackets
above identify the curvature tensor R again, plus horizontal and vertical brackets of vector
fields along τ , which are given by

[X, Y ]
V

= (XV (Y i)− Y V (X i))
∂

∂qi
, [X, Y ]

H
= (XH(Y i)− Y H(X i))

∂

∂qi
. (24)

Note that the vertical bracket satisfies a Jacobi identity, but the horizontal one doesn’t,
unless R is zero.

The covariant derivative operators DV and DH in turn define a linear connection on the
pull-back bundle τ ∗TM → TM , as follows: every ξ ∈ X (TM) has its unique decompo-
sition in the form ξ = XH + Y V , with X, Y ∈ X (τ), define ∇ξ : X (τ) → X (τ) by (see
[14])

∇ξ = DH

X + DV

Y . (25)

∇ξ is said to be a connection of Berwald type. For more insight in the geometric features
of such connections, see [7].

Since ∇ξ acts on vector fields along τ , one may raise the question: should this be called
a linear connection along τ? As explained in the introduction, however, it is only after
looking back at Krupka’s old paper [10], that I realized that there is something else which
corresponds better to this terminology, although there should be links with what has just
been recalled. Before entering into the subtleties of this discussion, I need to say a few
words about the special case that the non-linear connection which has been used so far,
is the canonical one associated to a second-order equation field (Sode). To keep it well
distinguished from the general case, I will do this in a separate section.

3 The case of a Sode connection

As is well known, the tangent bundle TM of a manifold comes equipped with an intrin-
sically defined type (1,1) tensor field S, usually called the vertical endomorphism, which
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has the coordinate expression S = dqi ⊗ ∂/∂vi. A Sode Γ is characterized by the fact
that S(Γ) is the dilation vector field ∆ = vi ∂/∂vi. It has the property (LΓS)2 = I (the
identity tensor), from which it follows that

PH =
1

2
(I − LΓS), PV =

1

2
(I + LΓS)

are complementary projection operators and thus define a non-linear connection. If Γ has
the coordinate representation

Γ = vi ∂

∂qi
+ f i(q, v)

∂

∂vi
, (26)

the connection coefficients of the Sode connection are given by

Γj
i = −1

2

∂f j

∂vi
. (27)

A Sode connection is characterized by the fact that it has zero torsion T .

Note that there exists a canonical vector field along τ , namely the identity map on TM ,
which will be denoted by

T = vi ∂

∂qi
. (28)

It is of some interest to point out that for any non-linear connection, TH is a Sode, let
us call it the associated Sode, but if the connection we start from is a Sode connection,
its associated TH will in general not coincide with the original Γ, as is obvious from the
coordinate expressions.

In addition to the machinery developed for arbitrary connections, the case of a Sode
connection has two very important extra tools to offer: one is the dynamical covariant
derivative ∇, which is a degree 0 derivation, the other is a (1,1) tensor Φ ∈ V 1(τ), called
the Jacobi endomorphism. They are forced upon us, for example, via the same sort of
interplay between the calculus along τ and standard calculus on TM , by looking at the
decomposition of LΓXH. Indeed, it turns out that the vertical part in this decomposition
depends tensorially on X, while the horizontal part identifies a derivation. So, we can
write,

LΓXH = (∇X)H + Φ(X)V , (29)

which defines Φ and ∇ on X (τ). ∇ is further determined by the duality rule (23) and the
fact that ∇F = Γ(F ) on functions F ∈ C∞(TM). For computational purposes:

∇
(

∂

∂qi

)
= Γk

i

∂

∂qk
, ∇(dqi) = −Γi

k dqk, (30)

and

Φ = Φi
j dqj ⊗ ∂

∂qi
, with Φi

j = −∂f i

∂qj
− Γk

j Γ
i
k − Γ(Γi

j). (31)

The relevance of Φ and ∇ is already obvious from the properties:

dVΦ = 3R, dHΦ = ∇R. (32)
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Since variationality will be one of the topics under discussion later on, I conclude this
section with the very concise formulation of the so-called Helmholtz conditions within
this geometric approach: the necessary and sufficient conditions for the existence of a
(regular) Lagrangian formulation of a given Sode Γ are the existence of a non-degenerate,
symmetric type (0,2) tensor field g along τ , satisfying the requirements [16]:

∇g = 0, (33)

DV

Xg(Y, Z) = DV

Zg(Y,X), (34)

g(ΦX, Y ) = g(ΦY,X). (35)

To close the sections about the main ingredients of the calculus along τ and its relevance
in the study of second-order dynamics, I should say that the calculus along τ is being
used systematically also in Szilasi’s magnum opus [23].

4 Linear connections along τ

Let us go back now to Rund’s direction-dependent connections, i.e. maps D : TM →
ΓM fitting in the commutative diagram of the introduction. My first aim is to find a
coordinate-free justification for the equations (1), as geodesic equations, and for (2) as
defining relation of the covariant derivative of a metric along τ .

The fibre of ΓM at m ∈ M consist of maps

D : TmM ×Xm → TmM,

where Xm denotes the module of vector fields on M defined in a neighbourhood of m,
which have the properties

DλvmY = λDvmY, λ ∈ IR

Dvm(fY ) = f(m)DvmY + vm(f)Y (m), f ∈ C∞(M)

plus linearity with respect to the sum in both arguments. So for each wm ∈ TmM , D(wm)
is such a map, and is locally defined by functions γk

ij on TM , such that

D(wm) ∂

∂qi

�
�
�
m

∂

∂qj
= γk

ij(wm)
∂

∂qk

∣∣∣∣
m

. (36)

For an alternative view, given a D in the above sense, define for all X ∈ X (τ), and
Y ∈ X (M), a map

D : X (τ)×X (M) → X (τ),

by
(DXY )(wm) = D(wm)Xwm

Y. (37)

By construction, DXY will be IR-linear in both arguments and further satisfies

DFXY = F DXY, ∀F ∈ C∞(TM) (38)

DX(fY ) = f DXY + X(f) Y, ∀f ∈ C∞(M). (39)

8



Proposition 1: A linear connection D along τ is a map D : X (τ)×X (M) → X (τ) which
is IR-linear in both arguments and has the properties (38, 39).

Proof: Indeed, conversely, using the standard trick with a bump function, the above
properties imply that the value of DXY at a point wm ∈ TmM only depends on the value
of X at wm. As a result, it makes sense to define a map D : TM → ΓM by

D(wm)vmY = (DXY )(wm),

where X is any vector field along τ such that Xwm = vm, and this provides a linear
connection along τ , in the sense of the commutative diagram we started from.

To extend D further as covariant derivative operator, we need to extend the second
argument to X (τ), which in turn requires some notion of horizontal lift for the action on
functions on TM .

Given a curve σ : t 7→ qi(t) in M , take a vector field along σ, i.e. a curve η : t 7→
(qi(t), ηi(t)) in TM which projects onto σ, and define another vector field Dσ̇η along σ by

(Dσ̇η)(t) = D(η(t))σ̇(t)Y. (40)

Here, Y is any vector field, defined in a neighbourhood of σ(t), such that Y (σ(t)) = η(t).
In coordinates:

Dσ̇η(t) =
(
η̇k(t) + γk

ij(η(t))q̇i(t)ηj(t)
) ∂

∂qk

∣∣∣∣
σ(t)

, (41)

where

σ̇(t) = (q(t), q̇(t)) and η̇k(t) =
∂Y k

∂qi
(q(t))q̇i(t).

We can now come to a notion of parallel transport in the usual way: η is said to be parallel
along σ if Dσ̇η(t) = 0 for all t. As in the standard theory, for a given curve σ in M and
an arbitrary point v in the fibre of σ(t0) say, there is a unique η along σ, which passes
through v and is parallel. This η is called the horizontal lift of σ (through v): η = σh.
Note, however, that the differential equations to be solved for the ηi are non-linear here.

Definition: A curve γ in M is said to be a geodesic of the linear connection D along τ
if γh = γ̇, i.e.

Dγ̇ γ̇ = 0. (42)

From (41), it is clear that in coordinates, t 7→ qi(t) is a geodesic if it satisfies the Sode
equations

q̈k + γk
ij(q, q̇)q̇

iq̇j = 0,

which are indeed the equations (1). This resolves our first query.

In order to obtain a covariant derivative operator, acting on tensorial objects along τ , it
suffices now to extend the horizontal lift construction to vector fields.

Definition: The horizontal lift of X ∈ X (M) is the vector field Xh on TM , which projects
onto X and is further determined by the requirement that its integral curves are horizontal
lifts of integral curves of X.
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It follows that, in coordinates:

Xh = X i(q)

(
∂

∂qi
− γk

ij(q, v)vj ∂

∂vk

)
put
= X i hi, (43)

and this horizontal lift naturally extends to X (τ).

We can then, in the first place, extend the action of D to an operator

D : X (τ)×X (τ) → X (τ), (44)

by putting
DXF = Xh(F ) X ∈ X (τ), F ∈ C∞(TM), (45)

and
DX(FY ) = FDXY + Xh(F )Y Y ∈ X (M), F ∈ C∞(TM). (46)

Finally, DX further extends to 1-forms along τ by duality, and subsequently to arbitrary
tensor fields along τ . In particular, for g ∈ T 0

2 (τ), an intrinsic definition of DXg becomes:

(DXg)(Y, Z) = Xh(g(Y, Z))− g(DXY, Z)− g(Y, DXZ). (47)

This justifies the covariant derivative formula (2) of Rund (as found in [4] and [10], for
example), except for a difference in convention! Indeed, the coordinate expression of (47)
reads

gij|k = (D∂/∂qkg)ij =
∂gij

∂qk
− ∂gij

∂vs
γs

krv
r − γm

kigjm − γm
kjgim, (48)

and has a different order for the bottom indices of the connection coefficients, an issue
of course which depends on the convention adopted at the very start, namely with the
defining relations (36).

5 A variety of related connections

We have seen in the previous section that a linear connection D along τ comes with an
associated notion of horizontal lift, as it should, and defines a Sode, namely the equations
for geodesics. But that inevitably means that there are a number of other connections
around. Studying the relationship between those connections is a somewhat slippery
domain, because it is easy to get dragged away into identifying all sorts of tensors, which
are perhaps only marginally interesting. I shall try to limit myself here to what seem to
me the bare essentials of such a discussion.

The horizontal lift (43) was indispensable to arrive at the covariant derivative opera-
tor DX . It defines at the same time a non-linear connection, however, with connection
coefficients

hΓk
i = γk

ijv
j, (49)

and that in turn, in agreement with the general formulas (22), defines a horizontal covari-
ant derivative Dh

X . Since DX and Dh
X agree on functions, their difference, when acting on
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some Y ∈ X (τ), depends tensorially on Y . Hence, every linear connection D along τ has
an associated type (1,2) tensor field along τ , which I shall denote by K, and seems not to
have been noticed or highlighted before in the literature.

Definition: The fundamental tensor field K of a linear connection D along τ is the type
(1, 2) tensor along τ determined by

K(X, Y ) = DXY −Dh
XY. (50)

In coordinates

K = Kk
ij dqi ⊗ dqj ⊗ ∂

∂qk
, Kk

ij = −∂γk
il

∂vj
vl = − ∂

∂vj

(
hΓk

i

)
+ γk

ij. (51)

In terms of the different types of derivations, discussed in section 2, we can write that
DX = Dh

X + aX K for the action on X (τ) (with X K(Y ) = K(X, Y )). By the duality
rule (23), this implies that for the action on 1-forms α ∈

∧1(τ), we will have DXα =
Dh

Xα− iX Kα. It follows that for the action on arbitrary tensor fields,

DX = Dh
X + µX K, (52)

where for an arbitrary (1,1) tensor A, µA = aA − iA (see [16]).

There is, of course, also the Sode connection associated with the geodesic equations (1)
coming from D. Its connection coefficients, according to (27), are given by

HΓk
i = 1

2
(γk

il + γk
li)v

l + 1
2

∂γk
lm

∂vi
vlvm, (53)

and it has its own horizontal covariant derivative DH
X . From now on, I shall systematically

use superscripts h (or subscripts h) for everything that relates to the derivative Dh, while
H (or H) will refer to the canonical connection of the geodesic Sode Γ. The difference
between the two horizontal distributions determines a type (1,1) tensor, for which I will
not introduce a separate notation because it is derived from more fundamental tensors;
its components are given by

HΓk
i − hΓk

i = 1
2
(γk

li − γk
il)v

l + 1
2

∂γk
lm

∂vi
vlvm. (54)

The second term on the right is easily seen to be −1
2
(T K)k

i , while the first term comes
from the torsion tensor of D. Indeed, as will be seen in the next section, one can give
an intrinsic definition of the concept of torsion of D, which then is found to have the
coordinate representation

DT = 1
2
DT k

ij dqi ∧ dqj ⊗ ∂

∂qk
, DT k

ij = γk
ij − γk

ji. (55)

So the first term on the right in (54) is 1
2
(iT

DT )k
i .

The subtle interplay between the different connections which are around can be seen from
the following properties. From the general discussion in section 3, it should not come as
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a surprise that TH is not the geodesic Sode Γ from which the horizontal lift H is derived.
But we do have that Th = Γ. Recall further that an important degree zero derivation
associated to a Sode is the dynamical covariant derivative ∇. But by choosing the vector
field X in the different covariant derivative operators we have so far considered to be the
canonical T, there are, so to speak, three more degree zero derivations available which
should have some similarity to ∇, namely DT, Dh

T and DH
T. The last one is quite different

from the others, in general. Since Th = Γ, ∇, DT and Dh
T on the other hand all coincide

on functions. Yet, they are not the same since, for example,

∇ ∂

∂qi
= HΓk

i

∂

∂qk
, DT

∂

∂qi
= vlγk

li

∂

∂qk
, (56)

while, in accordance with (52), the difference between DT and Dh
T is determined by T K.

An interesting property of the linear D along τ is that

DXT = 0, ∀X ∈ X (τ). (57)

This can easily be verified in coordinates. It follows that

Dh
XT = −K(X,T). (58)

In particular, we have DTT = 0, a property which is in general not shared by the related
derivations ∇, Dh

T and DH
T.

A different aspect which needs some inspection in this section is the relationship between
linear connections along τ and linear connections on the pullback bundle τ ∗τ : τ ∗TM →
TM . This relationship is not a very strict one a priori as, again, there are many different
elements one can bring into the picture. But I shall try to develop arguments which bring
us to a kind of natural correspondence in the end. At the start of such a discussion,
however, one has to make a clear distinction between the defining requirements of a linear
connection along τ , as expressed for example by Proposition 1, and the extension to a map
D : X (τ) × X (τ) → X (τ) which was needed to arrive at a covariant derivative operator
on tensors along τ .

The most immediate association between both concepts one can think of, goes as follows.
Let D be a linear connection along τ , locally determined by

D∂/∂qi

∂

∂qj
= γk

ij(q, v)
∂

∂qk
.

Define for each ξ ∈ X (TM) a map ∇ξ : X (τ) → X (τ) by

∇∂/∂qi

∂

∂qj
= γk

ij

∂

∂qk
, ∇∂/∂vi

∂

∂qj
= 0, ∇Fξ = F∇ξ, (59)

∇ξ(FX) = F ∇ξX + ξ(F ) X, F ∈ C∞(TM), X ∈ X (τ). (60)

It is easy to see that ∇ satisfies the requirements for a linear connection on τ ∗τ , but this
association calls for more intrinsic procedures and insights.

12



It seems to me, however, that in view of what precedes, it is appropriate to bring first
the availability of an extra horizontal distribution in the discussion. This way, we can
make a link also with yet another construction in the literature. Indeed, a pair (∇ξ, PH),
consisting of a linear connection on τ ∗τ and a horizontal projector on TM is essentially
(possibly after identification of the pullback bundle with the bundle of vertical tangent
vectors to TM) what is called a “Finsler connection” by Matsumoto [17] and in Bejancu’s
book [5], for example, and indeed in many other sources.

Suppose we have such a pair (∇ξ, PH), where PH is general here (i.e. not necessarily the
Sode connection of the geodesics), so that every ξ has its decomposition ξ = XH + Y V

for some X, Y ∈ X (τ). Then, for each X ∈ X (τ) we can define DX : X (M) → X (τ) as

DX = ∇XH |X (M) .

It is clear that DX has all the right properties (Proposition 1), and if we put

∇∂/∂qi

∂

∂qj
= Γk

ij

∂

∂qk
,

the connection coefficients of D are γk
ij = Γk

ij. Observe, however, that the associated h-lift
of D is not the H we started from. Note also that ∇XV |X (M) defines a tensorial object
which we disregard in this construction.

Conversely, suppose the data are a linear D and an arbitrary horizontal lift H (not nec-
essarily the h associated to D). Then, a corresponding ∇ξ can be constructed as follows:
for X ∈ X (τ), Z ∈ X (M) and F ∈ C∞(TM), put

∇XHZ = DXZ, ∇XV Z = 0,

∇ξ(FZ) = F ∇ξZ + ξ(F ) Z.

The property ∇XV Z = 0 expresses that ∇ acts on any fibre of TM by so-called complete
parallelism (see [7]). The element of caution to mention here is that∇XH (FZ) 6= DX(FZ).

Now, it is clear that in both of the directions of the above construction, one of the data in
fact can imply the availability of the other, so let us finally reduce the data again in that
sense. This means that in the first construction, we now assume that only a horizontal
projector is given. Then, there is a naturally associated linear connection on τ ∗τ , namely
the Berwald type connection (25). The linear D along τ which then follows is determined
by

DX = DH

X |X (M) ,

and if Γk
i are the connection coefficients of the given non-linear connection, we have:

γk
ij = ∂Γk

i /∂vj. Again, one has to be careful, because the extension of this DX to X (τ),
as discussed in the previous section is not the DH

X we started from.

For the converse construction, it suffices to have D as only data, because D comes with its
own horizontal lift h as discussed before. The above general construction did not depend
on the choice of a horizontal lift anyway, so we can carry it out just as well with h. The
connection coefficients of ∇ξ are given by: Γk

ij = γk
ij (and zero), i.e. we recover the ‘direct
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association’ we mentioned at the beginning, but in a more elegant way. This time, we
do have that ∇Xh(FZ) = DX(FZ) for F ∈ C∞(TM). However, the resulting ∇ξ is
generally not of Berwald type, which is essentially due to the fact that DX 6= Dh

X , i.e. to
the fundamental tensor K. Nevertheless, this association between D and ∇ξ is the most
relevant point in our discussion, and we formalize it, therefore, in the following statement.

Proposition 2: Let D be a linear connection along τ , then there is a linear connection
∇ on τ ∗τ , which is uniquely determined by the following prescriptions: for X ∈ X (τ),
Z ∈ X (M) and F ∈ C∞(TM),

∇XhZ = DXZ, ∇XV Z = 0, (61)

∇ξ(FZ) = F ∇ξZ + ξ(F ) Z, (62)

where h is the horizontal lift determined by D.

We can now give an interesting alternative interpretation of the fundamental tensor K of
D. The point is the following: there are five tensors along τ which can be associated to a
pair like (∇ξ, Ph). They can be regarded as torsions of ∇ and were called A, R, B, P and
S in [7]. The term torsion can be justified by the fact that any pair of a linear ∇ on τ ∗τ
and a horizontal distribution on TM induces a linear connection on T (TM) also, whose
torsion has five components which (as by now familiar) are lifts of tensor fields along τ
(see also [22] and [5] for a discussion about these five torsion tensors). Now, B = S = 0
here (as a result of the second condition in (61)), and P , in particular is defined by

P(X,Y ) = ∇XhY −Dh
XY. (63)

It follows from the first of (61) that P = K. The two other tensors A and R will be
encountered in the next section. Incidentally, the association between DX and ∇Xh in
(61) is a kind of generalization of what are called h-basic covariant derivative operators
by Szilasi [23].

The most obvious conclusion one can draw at the end of this section is that one should be
extremely careful in comparing or using different types of connections which are around
in this area!

6 Torsion and curvature of the linear D along τ

There are different ways of approaching the concept of torsion of a connection. For a
direct definition of the torsion tensor, one needs a bracket of vector fields. In the case of
a linear connection D along τ , since D induces a horizontal distribution, it looks natural
to think of the associated horizontal bracket, as defined in (24).

Definition: The torsion DT of a linear connection D along τ is the vector-valued 2-form
along τ , defined by

DT (X, Y ) = DXY −DY X − [X, Y ]h, X, Y ∈ X (τ). (64)
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It is easy to verify that DT is indeed a tensor. In fact, we have (see [16]),

[X, Y ]h = Dh
XY −Dh

Y X − hT (X,Y ), (65)

where hT is the torsion of the non-linear connection h, which according to (14, 49) has
components

hT k
ij = Vj(

hΓk
i )− Vi(

hΓk
j ),

hΓk
i = γk

ilv
l. (66)

This implies that
DT (X, Y ) = K(X, Y )− K(Y, X) + hT (X,Y ). (67)

Evaluating this expression in coordinates, all derivatives of the γk
ij cancel out, and one

indeed obtains the previously cited formula (55), which agrees with the expression given
by Asanov [4]. Note further that, in terms of the association expressed by Proposition 2,
DT is in fact the A-torsion of the linear connection on τ ∗τ .

As for curvature, it is best first of all to make a notational distinction: I shall use the
notation curv when talking about curvature of any sort of linear connection and R as in
section 2 for the curvature tensor of a non-linear connection. The natural definition of
curvature of a linear D along τ would seem to be

Dcurv(X, Y )Z =
(
DXDY −DY DX −D[X,Y ]h

)
Z. (68)

Observe, however, that this is tensorial in X, Y , but not in Z, unless the Z-argument is
restricted to X (M). With F ∈ C∞(TM), it follows from (20) that

Dcurv(X, Y )(FZ) = F (Dcurv)(X, Y )Z + (hR(X, Y ))
V
(F ) Z, (69)

where hR is the curvature of the non-linear connection associated to the h-lift. In coor-
dinates, with hi referring to the local basis of horizontal vector fields in (43), one readily
finds that

(Dcurv)m
ijk = hi(γ

m
jk)− hj(γ

m
ik) + γl

jkγ
m
il − γl

ikγ
m
jl . (70)

These are effectively (with a transposition of the lower indices in the connection coeffi-
cients, as reported before) the curvature components (3) mentioned in [4]. One should
keep in mind, however, that they are, for the moment at least, components of a map
Dcurv : X (τ)×X (τ)×X (M) → X (τ). An interesting side observation is that

hRi
jk = hk(

hΓi
j)− hj(

hΓi
k) = (Dcurv)i

kjlv
l. (71)

Note also that hR is, up to a sign, the so-called R-torsion of the associated linear connec-
tion on τ ∗τ , determined by Proposition 2.

At this point, it is worth referring to the comments in the introduction which follow
equation (3), and to illustrate again now that there is a marked advantage in conceiving
all objects and operations of interest as living along τ (as opposed to mixing calculations
along τ with calculations on TM). Indeed, the property (69) provides the clue to remedy
the non-tensorial aspect of Dcurv.
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Definition: The curvature of a linear connection D along τ is the type (1, 1) tensor-valued
2-form Dc̃urv along τ , defined by

Dc̃urv(X, Y )Z =
(
DXDY −DY DX −D[X,Y ]h

)
Z −DV

(hR)(X,Y )Z. (72)

The components of this tensor, which are obtained by taking coordinate vector fields for
the arguments X, Y, Z, are the same as (70), since the extra term does not contribute to
this computation. Note again that, as with the torsion (or in fact the covariant derivative
DX itself) the non-linear h-connection is needed to define the curvature of D. It is clear
then that one can define a related tensor field of curvature type as follows:

hcurv(X,Y )Z =
(
Dh

XDh
Y −Dh

Y Dh
X −Dh

[X,Y ]h

)
Z −DV

(hR)(X,Y )Z. (73)

One can verify that the relation between both curvature tensors is given by

Dc̃urv(X, Y )Z = hcurv(X, Y )Z + Dh
XK (Y, Z)−Dh

Y K (X, Z)

+ K(hT (X,Y ), Z) + K(X, K(Y, Z))− K(Y,K(X, Z)), (74)

or equivalently

Dc̃urv(X, Y )Z = hcurv(X,Y )Z + DXK (Y, Z)−DY K (X, Z)

+ K(DT (X, Y ), Z)− K(X, K(Y, Z)) + K(Y, K(X, Z)). (75)

Concerning the geometrical interpretation of the tensor hcurv, it is worth observing that
this is in fact the horizontal component of the curvature of the Berwald-type connection
on τ ∗τ , associated to the h-lift. Indeed, taking the general formula (20) for brackets of
horizontal lifts into account, and denoting the Berwald-type covariant derivative by ∇ξ

as in (25), it is easy to see that

hcurv(X, Y )Z =
(
∇Xh∇Y h −∇Y h∇Xh −∇[Xh,Y h]

)
Z. (76)

Note finally that the property (71) has the following intrinsic content:

Dc̃urv(X, Y )T = −hR(X, Y ). (77)

I now briefly turn to the issue of Bianchi identities. In fact, with the insights we have
gained now, we should not expect new features to appear here, because torsion and
curvature of D are after all closely related to hT and hR, through (67) and (71) for
example, and Bianchi identities for these tensors are known to be compactly represented
by properties of the form (16). What looks appealing in this respect, however, is to
explore the meaning of an exterior derivative associated to D.

For the horizontal exterior derivative associated to the h-lift, we know [16] that on 1-forms
α ∈

∧1(τ),
dhα(X, Y ) = Dh

Xα (Y )−Dh
Y α (X) + α(hT (X, Y )). (78)

By analogy, therefore, it looks recommended to define the exterior derivative dD on func-
tions F ∈ C∞(TM) by dDF (X) = DXF = Xh(F ) and on 1-forms along τ by

dDα(X, Y ) = DXα (Y )−DY α (X) + α(DT (X, Y )). (79)
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But then, in view of (50) and (67), it follows that dD= dh on scalar forms. For the action
on vector fields along τ we have dhX(Y ) = Dh

Y X, hence by analogy put dDX(Y ) = DY X.
This implies that (dDX − dhX)(Y ) = K(Y,X), meaning that for the full action on V (τ),
we have

dD= dh + aK, (80)

where K, in agreement with (12) is regarded here as a tensor in
∧1(τ)⊗ V 1(τ). However,

since there is no difference between dD and dh on scalar forms, commutator properties of
dD of type (13), which could be regarded as defining torsion and curvature, will actually
reproduce hT and hR. As a result, the Bianchi identities essentially remain (see (16))

dh(hR) = 0, dh(hT )) + dV(hR) = 0, (81)

and can be re-formulated, using (80), (77) and (67) in terms of corresponding objects
related to D if needed.

7 Variationality versus metrizability

The two questions to be addressed here in fact have very little in common, but that is not
always so clear in the literature. In my opinion, metrizability is a property that can be
attributed to a connection, while variationality, in the context of a connection, can only
be attributed to its geodesic equations, and as such is common to an equivalence class of
connections, namely those which have the same geodesics.

A linear D along τ is variational if its geodesic equations (1) are variational. The point
to make is that studying this problem subsequently has very little to do with D anymore;
instead, the geometric tools of the Sode connection of the geodesics now enter the scene.
And the most comprehensive formulation of the problem is simply the existence of a
(non-singular) symmetric g along τ , satisfying the Helmholtz conditions (33, 34, 35). All
operations of interest in this problem, such as the dynamical covariant derivative ∇ and
Φ, have coordinate expressions in terms of the ‘forces’ f i of the Sode Γ, which are given
by

f i(q, v) = −γi
jk(q, v) vjvk. (82)

Hence, as observed in [12], nothing will change if we consider different D, i.e. different γi
jk

which produce the same f i. In fact, variationality of a given D was defined in [10] also as
the existence of some set of γi

jk, possibly different from the given ones but giving rise to
the same f i, such that the Helmholtz conditions are satisfied.

Reference [12] contains another statement which is worth situating within our present
analysis. As we discussed in section 5, there is a certain similarity between the dynamical
covariant derivative ∇ of the geodesic Sode and the operator DT (see (56) for example),
so it is of some interest to investigate to what extent ∇g = 0 differs from DTg = 0.
The answer to this question is the result (8.14) in [12] which, translated into our present
notations, states that, provided the linear D along τ is taken to be torsion free,

∇g = 0 ⇔ DTg =
1

2

(
gik

∂γk
lm

∂vj
+ gjk

∂γk
lm

∂vi

)
vlvm. (83)
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Expressed differently, and in more intrinsic terms, we can say that for a torsion-free D,

(∇g = 0 ⇔ DTg = 0) if and only if µT Kg = 0. (84)

In fact, in view of (52), we then also have Dh
Tg = 0.

A discussion of metrizability is more delicate, because here I differ in opinion with some
of the references cited so far. In my view, a linear D along τ is metrizable if there exists
a (non-singular) symmetric g along τ , such that DXg = 0 for all X ∈ X (τ) (without
any further assumptions on g). The requirements on g here are directly related to the
given connection and are quite different from ∇g = 0, for example. In other words,
generally speaking, it doesn’t make much sense to expect that metrizability might imply
variationality or vice versa, unless of course you modify your definition until that works.

There are roughly two aspects one can consider: one is the strict and hard question of
studying for a given fixed D the existence of a suitable g; the other and much more
tangible question is to start from a given g and try to modify the connection to make it
metric with respect to this g. I will argue, however, that even the second question does
not have an entirely compatible solution in the case of a linear connection along τ .

Inspired by the concept of Cartan tensor which one can find, for example, in the work of
Miron and co-workers (see e.g. [20] and [2]), the following looks like a natural concept to
introduce here.

Definition: The Cartan tensor associated to a given non-singular, symmetric g and a
linear connection D along τ , is the symmetric type (1, 2) tensor CD along τ , determined
by

g(CD(X, Y ), Z) = DXg (Y, Z) + DY g (X, Z)−DZg (X,Y ), X, Y, Z ∈ X (τ). (85)

The coordinate expression of CD is found to be

CDk
ij = gkl

(
hi(gjl) + hj(gil)− hl(gij)

)
− (γk

ij + γk
ji)

+ gkl
[
gjm(γm

li − γm
il ) + gim(γm

lj − γm
jl )
]
, (86)

and simplifies somewhat for a torsion-free connection.

Proposition 3: We have

(i)
(
DX + 1

2
µX CD

)
g = 0, ∀X ∈ X (τ),

(ii) DXg = 0, ∀X ∈ X (τ) ⇔ CD = 0.

Proof: The first property is a straightforward computation: we have(
DX + 1

2
µX CD

)
g (Y, Z) = DXg (Y, Z)− 1

2

[
g(CD(X, Y ), Z) + g(CD(X, Z), Y )

]
,

from which the result immediately follows by using (85). Obviously then, if CD = 0 it
follows that DXg = 0, ∀X, while the converse trivially follows from the definition of
CD.
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So, metrizability of a given D is (as usual) a matter of a vanishing Cartan tensor, in other
words, the hard question then is to study under what circumstances, with given γk

ij(q, v),

the equations glkCDk
ij = 0 can have a solution for g.

It would seem that the statement (i) in the above proposition contains the (expected)
answer about how to modify the given connection to make it metric with respect to g.
There is a technical problem, however, which makes that this is not quite true! To see this,
let’s go back to the original concept of a linear connection along τ , in the interpretation
of Proposition 1. This shows that the difference between two such connections is a type
(1,2) tensorial object indeed, C say, but in the following sense:

C : X (τ)×X (M) → X (τ).

Hence, starting from a DX , putting D′
X := DX + µX C defines a new linear connection

along τ , but as soon as one wants to extend the action of D′
X to X (τ) by the rules (45, 46),

there is a certain incompatibility, because the horizontal lift h′ induced by D′ is different
from the original h-lift, while the defining relation of D′

X , without modification, would
imply that on functions F ∈ C∞(TM): D′

XF = XhF . As was the case in discussing the
notion of curvature (see (72)), one has to correct with a vertical derivative term (which
does not modify the connection coefficients) to remedy this deficiency, and the clue on
how to do this here comes from the property (57) which every properly extended linear
connection along τ should have.

Proposition 4: If C is an arbitrary type (1, 2) tensor along τ , then the following modi-
fication of a given D defines a new linear connection along τ which is compatible with its
induced horizontal lift :

D′
X = DX + µX C −DV

C(X,T). (87)

Proof: Recall that for Y ∈ X (τ), we have: µX CY = C(X, Y ) and DV
Y T = Y . It easily

follows that DXT = 0 implies D′
XT = 0, and one can verify in coordinates that this is

the same as saying that for F ∈ C∞(TM), D′
XF = Xh′(F ) where γ′k

ij = γk
ij + Ck

ij.

Coming back to the subject of Proposition 3 now, we see that the modified covariant
derivative operator of the first statement necessarily has to be taken in its extended
sense, since it acts on g (not just on basic vector fields). Therefore, the genuine modified

linear connection D̃ which is at stake here, reads

D̃X = DX + 1
2
µX CD −

1
2
DV

CD(X,T). (88)

Unfortunately, however, the conclusion then is that we don’t have D̃Xg = 0, ∀X, but
rather

D̃Xg + 1
2
DV

CD(X,T)g = 0. (89)

One might consider to cover this technicality by defining a linear D along τ to be metrical
with respect to some g, if for all X ∈ X (τ), DXg = 0 modulo vertical derivatives of g.

It is interesting to look at the preceding technical problem still from a different perspective.
By Proposition 2, we know how to associate with D a linear connection ∇ξ on the pullback
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bundle τ ∗τ . In turn, as was done (in a time-dependent set-up) in [18], for example, one
can then define a horizontal Cartan tensor in that context by

g(Ch(X, Y ), Z) = ∇Xhg (Y, Z) +∇Y hg (X, Z)−∇Zhg (X, Y ), X, Y, Z ∈ X (τ). (90)

Actually Ch = CD, but we can pose the problem of constructing a modified metrical
connection at this level without any complications. Indeed,

∇̃Xh = ∇Xh + 1
2
µX Ch

(91)

will have the property that ∇̃Xhg = 0, for all X. Since it is only the horizontal component
of ∇̃ξ which becomes metrical in this process, one could call this a connection of Chern-
Rund type. The problem we have encountered before comes from the fact (explained in

detail in section 5) that in going back from ∇̃Xh to a linear D̃X along τ , the horizontal

lift induced by this D̃ is not the one we started from.

For completeness, coming back to the point I made at the very beginning of the section,
I should mention the special case of a standard linear connection on M , where the con-
nection coefficients do not depend on the vi and the geodesics come from a spray. Then,
the requirement that for some (quasi-Riemannian) metric g we have gij|k = 0 (for all k) ,
obviously is equivalent to requiring that gij|kv

k = 0, in other words, in that situation we
have

DXg = 0, ∀X ⇔ DTg = ∇g = 0.

That is why variationality (where ∇g = 0 is a key condition) and metrizability (which is
about DXg = 0, ∀X) are closely related then. By the way, it looks like an interesting
question to investigate, for the general case of a linear D along τ , is under what circum-
stances DTg = 0 will imply DXg = 0, ∀X ∈ X (τ) (some form of homogeneity is probably
indispensable for that).

There is a final link I should explain to conclude this discussion. A very recent paper [6]
carries the title “Metric nonlinear connections”. So what is this about? The author takes
a Sode Γ, plus a non-linear connection with connection coefficients N i

j say, to build a
covariant derivative operator, ∇ say, by putting (I am identifying vertical tangent vectors
to TM with vectors along τ):

∇F = Γ(F ), F ∈ C∞(TM), ∇ ∂

∂qi
= N j

i

∂

∂qj
. (92)

Here, the non-linear connection may or may not be the canonical one coming from Γ
(although I don’t see the point really in taking a different one to start with). Anyhow, it
is clear that this operator is of the type of a dynamical covariant derivative, and it can be
of interest, of course, to study compatibility of ∇ with some metric g, in the sense that
∇g = 0. Whether it is appropriate to classify this question under ‘metrizability’ problems
is perhaps debatable here, if a dynamical covariant derivative is all one has. The main
problem which is addressed in section 2 of [6] is to construct from ∇ a new ∇′ such that
∇′g = 0, where g is a given metric along τ . The solution to this problem is in fact quite
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simple: taking ∇′ and ∇ to be identical on functions, they must be related by a formula
of the form:

∇′ = ∇+ µA,

for some (1, 1) tensor A, which must be chosen in such a way that

g(AX, Y ) + g(X, AY ) = ∇g(X, Y ), ∀X,Y.

It is clear that a solution for A is given by

Ai
j = 1

2
gil(∇g)lj,

which means that the modified N ′i
j are determined by

gliN
′i
j = 1

2
(∇g)lj + gliN

i
j = 1

2
Γ(glj) + 1

2
(gliN

i
j − gjiN

i
l ).

In the case that the N i
j we start from are the canonical Γi

j (see (27)), so that ∇ is precisely
the dynamical covariant derivative of the Sode Γ, the above relation is exactly equation
(12) in [6], and thus explains Theorem 2.2 of that paper.

8 Hessian metrics along τ and Finsler spaces

Let’s go back to the general question of metrizability of a linear D along τ , meaning
that we want a g such that DXg = 0, ∀X. Since solving the vanishing of (48) for g, for
example, is a hard problem, one will naturally be led to look at the effect of imposing
extra restrictions on g. It seems to me that a good way to proceed would be to work
in stages, as follows: first study the effect of imposing that gij be the Hessian matrix of
some function (with respect to the fibre coordinates vi), and secondly assume that g is
homogeneous in the vi, for example (but not exclusively) of degree zero. I will not enter
into this study in any depth here. Though I think this has not been carried out yet in a
systematic way, it is true of course that many aspects of this idea frequently turn up in
the literature (sometimes rather related to one of the other types of connections discussed
in section 5 though). In the terminology of the Miron-school, for example, the first step
would correspond to passing from a “generalized Lagrange space” to a “Lagrange space”.

In [11], a linear D along τ is said to be metrizable if there exists a Finsler metric such
that DXg = 0, so homogeneity of g is taken to be part of the definition of metrizability
(and in fact also of the definition of variationality of D). A general Sode Γ on the other
hand is said to be metrizable if there exists a “variational” metric g, meaning it is a
Hessian, such that ∇g = 0. In other words, two of the three Helmholtz conditions (33,
34, 35) are incorporated in the definition of metrizability here, which of course makes life
easier. Incidentally, an interesting question which emerges in this context is: under what
circumstances is the remaining Helmholtz condition redundant? It is well known that
this is the case for Finsler metrics. I claim it is true also as soon as we have homogeneity
of any order. It would take me too far away from the subject of this paper, however, to
prove this statement here.
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Instead, to finish, let’s go back to the master we are celebrating in this volume. Specif-
ically, let me return to the paper [10] I started from, because it contains a definition of
metrizability, which is very surprising if you see it for the first time and leads to an equally
surprising conclusion which is worth explaining in more intrinsic terms. Let me recall first
the definition of a Hessian metric in an intrinsic way.

Definition: The Hessian of a function L on TM is the symmetric type (0, 2) tensor field
g along τ , defined by

g(X, Y ) = DV

Y DV

XL−DV

DV
Y XL, X, Y ∈ X (τ). (93)

Now in [10], a linear D along τ is said to be metrizable if there exists a non-singular,
symmetric g along τ , such that

DXg = 0, ∀X, and
∂gij

∂vk
vj = 0. (94)

In intrinsic terms, the surprise extra condition means that

T DV

Xg = 0, ∀X. (95)

Lemma: If a symmetric g along τ has the property (95), then it is a Hessian and is
homogeneous of degree 0 in the fibre coordinates .

Proof: Put L = 1
2
g(T,T). Then, it follows from (95) and the general property DV

XT = X
that DV

XL = g(X,T). Taking a further vertical derivative with respect to Y and using
the intermediate result plus (95) again, we obtain that g satisfies (93), i.e. is the Hessian
of L. But a Hessian is characterized by the property (34), from which it follows, taking T
as one of the arguments and using (95) again, that DV

Tg = 0. This precisely means that
g is homogeneous of degree zero.

This result is far from new: (95) in one form or another is the defining relation for a
g along τ to be what is called normal ; it is well known as the necessary and sufficient
condition for g to be a Finslerian metric (see e.g. [19], [13]) and as such is attributed to
Hashiguchi [9]. A side remark: now that Finsler structures come into the picture, I will
omit the technicalities about having to pass from the tangent bundle to the slit tangent
bundle, and also not go into requirements about positive definiteness.

The main theorem in [10] states that under the conditions (94), the connection D is
variational and more precisely is the Cartan connection of a Finsler structure. The proof
of this theorem leaves the reader a bit startled, however. First of all, it is clear that the
calculations in the proof take for granted that the connection coefficients γk

ij of the given
D are symmetric: it is indeed a somewhat hidden assumption throughout the paper that
the connection is torsion free. Secondly, what is explicitly shown is an equivalence of
connections in the sense of variationality, that is to say: the geodesic Sode of D is shown
to be the same as the one coming from the Euler-Lagrange equations of the Finslerian g.
There is no explicit verification, however, that the assumptions imply that the given γk

ij

are effectively those of what is called (at least by some) the Cartan connection in that
context.
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I shall finish by presenting a slight generalization of this theorem which consists in ob-
taining roughly the same results from somewhat weaker conditions. This will give me
a chance to illustrate some of the features discussed in the previous sections, while the
details of the Krupka-Sattarov theorem will follow as a special case.

Theorem: Let D be a torsion-free, linear connection along τ , for which there exists a
non-singular, symmetric g along τ , such that

CD(X,T) = 0 and T DV

Xg = 0, ∀X. (96)

Then the following assertions hold true:

(i) D is variational: its geodesic Sode in fact is the canonical spray of g which is a
Finsler metric.

(ii) There exists a variationally equivalent D̃ along τ which is metric with respect to g:

D̃Xg = 0, ∀X.

(iii) The connection coefficients γ̃k
ij of D̃ have an explicit expression in terms of g only

and as such are those of the Cartan connection of g.

Proof: (i) From the lemma we know that g is Finslerian: it is the Hessian of L =
1
2
g(T,T), and L is homogeneous of degree 2 in the vi. From the coordinate expression

(86), taking the symmetry of the connection into account, it is clear that CD(T,T) = 0
implies that

γk
ijv

ivj = 1
2
gkl
(
hi(gjl) + hj(gil)− hl(gij)

)
vivj

= 1
2
gkl

(
∂gjl

∂qi
+

∂gil

∂qj
− ∂gij

∂ql

)
vivj set

= (γg)
k
ijv

ivj, (97)

where the reduction from the first to the second line follows from the property (95) again.
This second line clearly reveals the force terms of the Euler-Lagrange equations of L (and
should be read also as defining relations of the functions (γg)

k
ij(q, v)).

(ii) Since CD(X,T) = 0, the defining equation (88) of D̃ reduces to

D̃X = DX + 1
2
µX CD ,

and it follows from Proposition 3 that D̃Xg = 0, ∀X. Moreover, the new γ̃k
ij are given

by γ̃k
ij = γk

ij + 1
2
CDk

ij, so that CD(T,T) = 0 implies that γ̃k
ijv

ivj = γk
ijv

ivj, proving the
variational equivalence of both connections.

(iii) We can now compute the γ̃k
ij from the vanishing of the Cartan tensor of D̃. For

simplicity in notations, let us omit the tildes, i.e. assume we are back in the Krupka-
Sattarov situation now, so that DXg = 0. Then CD = 0 implies that

γk
ij = 1

2
gkl
(
hi(gjl) + hj(gil)− hl(gij)

)
, (98)
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but the right-hand sides in this expression contain in the vertical derivatives of the g-
components factors of the form γk

ijv
j. Multiplying (98) with vj (in other words, using

CD(X,T) = 0) and making use of (95) again, we find that

γk
ijv

j = (γg)
k
ijv

j − 1
2
gklγr

jsv
jvs ∂gil

∂vr
. (99)

Again, we still have γ’s in the right-hand side, but we can eliminate them now by using
(97). Substituting these intermediate results back into the expression (98), we finally get

γk
ij = (γg)

k
ij − 1

2
gkl

(
∂gjl

∂vr
(γg)

r
is +

∂gil

∂vr
(γg)

r
js −

∂gij

∂vr
(γg)

r
ls

)
vs

+ 1
4
gklgrt

(
∂gjl

∂vr

∂git

∂vu
+

∂gil

∂vr

∂gjt

∂vu
− ∂gij

∂vr

∂glt

∂vu

)
(γg)

u
spv

svp. (100)

This provides an explicit expression of the γk
ij in terms of the metric g, which is the same

as equation (4.5) in [10], and is called the Cartan connection there.

Remark: the implicit specification of the γk
ij, from which the final result can be deduced,

is also (for a symmetric connection) equation (A.27) in the previously cited Appendix of
[4], where it is referred to as the Cartan connection too. The type of computation in part
(iii) of the proof in fact is similar also to the way the Cartan connection is set up in [1].
We have seen in section 5, however, that when D is mapped onto a linear connection on
the pullback bundle according to Proposition 2, the metric nature of D corresponds to ∇
being horizontally metric, so that the more common terminology in that context would
be that we are talking about a connection of Chern-Rund type.

There are some interesting corollaries of the above theorem. Once we know that the
geodesic Sode of D is the canonical spray of a Finsler metric g, it follows that ∇g = 0.
Hence, we are in the situation (84) and know that µT Kg = 0. In fact, we can do a bit
better and show that T K = 0.

Proposition 5: Under the assumptions of the above theorem, the fundamental tensor K

of the linear connection D has the property K(T, X) = 0, ∀X ∈ X (τ). It follows that the
horizontal lift h associated to D, and the horizontal lift H of its geodesic Sode coincide.

Proof: For the components of T K, we can write

−
∂γk

ij

∂vr
vivj = − ∂

∂vr
(γk

ijv
ivj) + 2 γk

rjv
j.

But we know that CD(X,T) = 0, so that we can use the expressions (97) and (99)
to compute the two terms in the right-hand side. It is straightforward to verify that
making these substitutions, and using (95), all terms cancel out. The last statement then
immediately follows from (54).

Finally, taking (52) and (56) into account, plus the fact that Th = Γ always, it follows
that under the assumptions of the theorem: DT = Dh

T = DH
T = ∇.
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9 Concluding remarks

Having arrived in Finsler country at the end of our journey, where there is a vast literature,
and where every household seems to foster its own notations, it is possible that there are
still other results to which I could or should have compared aspects of what has been
discussed in this paper. But I hope the reader will find the road to these results using [3],
though this is not an easy navigating system.

The general construct of linear connections along τ , in the sense of Rund’s direction-
dependent connections, has been used strictu senso only occasionally in the literature, but
a number of aspects about such operations remained unclear, specifically with respect to
the intrinsic foundations of the theory. I hope I have managed to clarify such aspects in
this paper. New, potentially interesting questions have come up in my analysis and there
are undoubtedly many more one can think of. However, having identified also a number of
technicalities and dangers for confusion with related concepts, there is one major question
I would like to put forward, namely: “Do we actually need linear connections along
τ?”. Isn’t it possible for example that, with the geometrical calculus offered by linear
connections on the pullback bundle τ ∗τ , we have sufficient tools in our hand to analyse
all theoretical questions one might wish to study with linear connections along τ?
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