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Abstract
General-purpose cloth folding robots do not yet exist due to the deformable nature of textile, making it hard to engineer
manipulation pipelines or learn this task. In order to accelerate research for the learning of the robotic folding task,
we introduce a video dataset of human folding demonstrations. In total, we provide 8.5 hours of demonstrations
from multiple perspectives leading to 1000 folding samples of different types of textiles. The demonstrations are
recorded on multiple public places, in different conditions with a diverse set of people. Our dataset consists of
anonymized RGB images, depth frames, skeleton keypoint trajectories, and object labels. In this paper, we describe
our recording setup, the data format and utility scripts which can be accessed at https://adverley.github.io/
folding-demonstrations.

Keywords
Deformable objects, robotic manipulation, clothing, learning from demonstration, crowdsourcing

Introduction

Deep reinforcement learning is being applied to many
robotic manipulation problems such as grasping everyday
objects (Levine et al. 2018), peg-hole insertion (Finn
et al. 2016), and bin-picking tasks (Mahler et al. 2019).
However, applications concerning the manipulation of
deformable objects are scarce due to their highly complex
behavior caused by deformations (Foresti and Pellegrino
2004). Clothing, in particular, is a problem relevant to
household robotics and industry. While existing work
engineers highly complex pipelines (Doumanoglou et al.
2016; Maitin-Shepard et al. 2010) with predefined end-
effector trajectories (Miller et al. 2012), some authors
recently tried tackling the problem by learning the required
manipulation skills (Matas et al. 2018; Seita et al. 2018).
These methods require many demonstrations and are trained
in simulation, which can lead to transferability issues.
Additionally, defining a reward function for the robotic
folding problem is hard because of the high dimensionality
of the state of textile objects.

Prior work has shown that it is possible to bootstrap
learning by starting from task demonstrations (Večerík
et al. 2017) or learn the reward function from expert
samples (Abbeel and Ng 2004). Learning skills from human
demonstrations also provides a communication medium
from human to robot, enabling non-experts to train robots
or learn from video websites. Datasets containing task
executions are useful in this regard as they help research
in learning from human demonstrations. For example, the
MIME dataset (Sharma et al. 2018) consists of video
demonstrations of 20 different tasks. However, only one task
deals with deformable objects, the video stream is single-
view RGB-D data, and the task consists of wiping with a
cloth which is considerably less complicated compared to
folding clothing. Datasets that deal exclusively with clothing,
for example, DeepFashion (Liu et al. 2016) mainly focuses

on cloth recognition tasks making them hard to use for
learning the robotic folding task.

Figure 1. Picture of our folding table setup to crowdsource
video demonstrations in a public library.

To fill the gap in learning the robotic folding task from
human demonstrations, we provide a dataset that aims
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to accelerate research by providing crowdsourced video
demonstrations of people folding clothing. Kinect cameras
mounted on a folding table recorded the task executions
from multiple perspectives. This resulted in 1000 folding
demonstrations in the wild. We segmented and labelled
the data such that a subtask of each demonstration can be
queried. We provide anonymized RGB images and depth
values from three fixed perspectives, together with the
skeleton keypoint trajectories. We are confident our dataset
of video demonstrations of people folding clothing will
accelerate research for learning of the robotic folding task
and can be used for action recognition tasks on multiple
temporal levels, for example detecting different folding
methods and detecting the steps associated with folding
textile.

(a) The towels in the dataset contain different
textures and are of similar size.

(b) The sizes of the t-shirts range from small to
extra large and consists of a multitude of
colours.

(c) The hoodies are arguably the hardest piece
of textile to fold in the set. There are two
hoodies with a different colour.

Figure 2. The set of textiles that has to be folded by the
participants consists of hoodies, t-shirts and towels with a
variety of sizes, colours and textures.

Crowdsourcing Folding Demonstrations

We gathered a heterogeneous dataset of folding
demonstrations using a community-based participatory
approach (English et al. 2018). We involve citizens by
requesting them to demonstrate their method to fold
clothing on a folding table with cameras. Using posters, an
instructional video and warning symbols around the folding
table setup, we made it explicit that participants will be
recorded on video on video for the purpose of research in the
domain of robotics and AI. We collected no demographics
or other kind of personal information. This setup allows
us to capture different folding strategies and manipulation
varieties within a folding method. The participants consist
of a combination of students and visitors of a public library
in the third largest city in Belgium. This avoids selection
bias in the dataset. Furthermore, we place our setup within a
small exhibition on research in robotics to inform the public
about learning strategies for robots and give an answer to an
innate fear in society that self-learning robots could lead to
a loss in jobs (Fleming 2019).

To capture video task demonstrations, a special-purpose
folding table was designed and constructed which can be
seen in Figure 1. The table is a beam-like, wooden skeleton
structure consisting of a tabletop, a bench, camera mounting
points, a basket, and a locker. The participant is required
to fold the clothing on the working surface. The tabletop
is detachable in order to apply different tablecloths as a
means to introduce additional variety in the dataset. As we
require the demonstrator to sit while performing the task, we
place a large bench attached to the wooden frame. The bench
also obstructs observers to prevent occlusion and distraction
during task execution. There are three Kinect v2 cameras
mounted on top of the table. They capture the perspective
from the task executor and two top corner video streams to
deal with occlusion. They are placed approximately 160 cm
and 183 cm from the center of the folding table in order to
capture the complete folding sequence demonstration. The
Kinect cameras provide RGB and depth information at a
resolution of respectively 1920x1080 and 512x424 pixels.
The wooden basket is attached to the bench and serves as
a proxy for a laundry basket. Finally, a locker safeguards the
workstation embedded in the table. We use the libfreenect2
driver (Xiang et al. 2016) to capture the frames and process
the six video streams, RGB and depth information, online
using an AMD Ryzen 1700X CPU. Because of the high
bandwidth requirements of the Kinect cameras, we limit the
frame rate to 10 FPS.

To structure the participants’ task demonstrations, we
provided a four-step instruction list: (1) place randomly
selected clothing out of the basket on the left side of the table,
(2) fold one textile at the time in the middle of the table, (3)
collect it at the right of the table and (4) put all textile back
in the basket. We made an instructional video and put up a
poster containing these instructions to avoid high variance in
task execution.

Because the folding table is stationed in a public space
with mostly no human supervision, we leave it recording
throughout the project. To avoid running out of storage and
filtering frames without human activity, we run an activity
detection heuristic based on changes in the pixel values of
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Figure 3. Example output from our dataset. We provide RGB images, depth registrations and skeleton keypoint trajectories of
6.5 hours of human demonstrations of folding clothing. The RGB images are anonymized without compromising image fidelity or
disturbing the folding demonstration. The videos are segmented such that one sample represents the folding of one piece of textile.

the video stream. To guarantee ample observations, we also
actively visited the setup to attract and inform visitors about
the project. We noticed our presence had a positive effect
on the number of visitors willing to participate in the data
crowdsourcing project.

The included types of textiles in the basket are towels,
t-shirts, and hoodies. Examples are shown in Figure 2. We
excluded trousers as they are hard to flatten from a sitting
position. Socks were also excluded from the set because
folding socks require high-dexterous, fine manipulation
actions that would not be visible from the mounting position
of the cameras.

After capturing the example demonstrations, we cleaned
all false positive recordings from the database, sliced
the recordings into single-piece folding demonstrations
and manually labelled subtasks. The subtasks consist of
grasping isolated clothing, unfolding, flattening, folding
and stacking it on top of each other. We defined exact
definitions of these subtasks in Table 1 in order to
consistently label the video fragments. As data quality plays
an important role for learning algorithms, we annotated the

data ourselves to ensure there is consistency in the labelling
between samples. These subtask labels can, for example,
be used in reinforcement learning for reward engineering
or hierarchical learning and for the training of action
recognition systems. Skeleton keypoints were extracted from
all frames in post-processing using AlphaPose (Fang et al.
2017).

Folding Demonstrations Dataset

The observations in the datasets are captured over the
course of two months at two different public locations. The
set contains 1000 folding demonstrations of three different
types of textiles. This amounts up to 8.5 hours of folding
recorded in 304820 frames. We registered four different
types of folding methods. We segmented each video into
chunks of single folding demonstrations and provide RGB
frames, depth information, annotations, pose trajectories and
timestamps of the different steps in the folding task. The
content and how to access and use our dataset is described
in the remainder of this section.
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Subtask Definition

Isolated grasping The subject selects grasping points to
remove a piece of textile from a heap
of multiple textile pieces and isolates the
selected textile.

Unfolding The subject selects grasping points
and executes manipulation trajectories in
order to remove a fold.

Flattening The subject executes manipulations in
order to remove wrinkles from a piece of
textile which can be in any state.

Folding The subject selects grasping points
and executes manipulation trajectories in
order to bring the textile into a folded
configuration.

Stacking The subject grasps the textile and moves
it outside the folding area, possibly
stacking it on top of a pile of folded
textiles.

Table 1. Definitions used to label the subtasks in the folding
task

Folder structure
The dataset is segmented into folding demonstrations of a
single piece of textile. This structure is visible in the folder
hierarchy in Figure 4. For each example demonstration, we
find annotations and timestamps indicating the subset of
the task. Because we have three cameras mounted on fixed
positions on the folding table, we put the colour, depth and
pose registrations in the folders left, middle and right which
represent the viewpoint in front of the table.

Data format
The RGB images captured with the Kinect cameras are
compressed with the x265 codec. We use the intrinsic camera
calibration parameters to modify the images according to
the depth correction. All RGB frames are anonymized by
applying colour quantization to the corners of the frame
and pasting an ellipsoid colour patch around the face of
the demonstrator which was tracked using AlphaPose (Fang
et al. 2017).

Each sample in the dataset contains annotations in the
annotations.json file. The labelled information and data
format can be seen in Listing 1. We label which type of textile
is being folded and which folding method is being used. We
distinguish four categories of folding methods, labelled from
a to d. These categories represent an increasing amount of
complexity to learn a certain folding strategy. For example,
folding method a extensively uses the table to make folds. In
contrast, method b represents demonstrators making vertical
folds while lifting the cloth in the air. Method c categorizes
folding strategies which requires crossing the hands. Finally,
method d captures all different strategies not described by
the former folding categories, for example rolling up the
cloth. All four folding strategies can be used on all types
of cloth in the dataset. The different types of textile are
labelled as hoodie, shirt or towel. The distribution of the
folded clothing is as follows: 88% of the folded clothing are
shirts, 9% are towels and 3% hoodies. The timestamp is in
YYYY-MM-DD HH:MM:SS format. Given that the data is
crowdsourced, some variation exist in the way participants

Figure 4. Folder structure of the folding demonstration
dataset. There is a folder per folding demonstration, indicated
with <index>. Each sample contains labelled data in the
annotations json file. The images are grouped per perspective
and contain rgb and depth images. There are also joint
positions available per video perspective.

Quality label Definition

Follows instructions The instructions were followed
exactly.

Slight variation on
instructions

One deviation was made from
the instructions.

Very different from
instructions

Two or more deviations were
made from the instructions.

Table 2. Because not all demonstrators follow the given
high-level task instructions, we define a quality label of which
the definitions are given in this table.

followed the high-level process instructions. For example,
some demonstrators fold the clothing immediately out of the
basket instead of first collecting the pieces on the left side
of the table. To indicate to which extent the given process
instructions are being followed, we included a quality label
in the annotations. This label is useful if consistent, high-
quality samples need to be sampled. In the dataset, 86%
follow the given instructions, 12% make one deviation while
2% do not follow the given high-level instructions. The exact
definitions of the quality label are shown in Table 2.

We labelled each part of the video with a descriptor
indicating which step in the folding process the demon-
strator is going through. The different steps are named iso-
lated_grasping, unfolding, flattening, folding and stacking.

We provide human skeleton keypoint trajectories in the
file pose.json. There are pose trajectories available for each
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{
"id": 0,
"timestamp": "2018-09-30 19:35:06",
"cloth_type": "hoodie",
"location_id": 0,
"nb_frames": 579,
"folding_method": "a",
"demonstration_id": 0,
"nb_folds": {

"0": 0,
"66": 1,
"94": 2,
"118": 3

},
"subtask_changes": {

"0": "isolated_grasping",
"42": "unfolding",
"112": "folding",
"300": "stacking"

},
"quality": "follows instructions"

}

Listing 1: annotations.json description

camera perspective per folding sample. The joint positions
are stored in the JSON format visible in Listing 2. There is
a score associated with each pair of x and y coordinates.
This variable, ranging from 0 to 1 indicates the detection
confidence that a certain joint is at the given location. In
general, the coordinates for every joint positioned beneath
the shoulders are less reliable because the subject is sitting
on a bench with the legs occluded by the table. We consider
this not a problem because the coordinates of the joints of the
two arms are reliable and are of importance for the folding
task.

{
frame_nr: {

"LElbow": [x, y, score],
"RElbow": [x, y, score],
"LShoulder": [x, y, score],
"RShoulder": [x, y, score],
"LWrist": [x, y, score],
"RWrist": [x, y, score],
...
"confidence": 100.0

}
}

Listing 2: pose.json description

Project website and helper scripts
Along with the data, we provide helper scripts in
Python which are available at https://github.
com/adverley/folding-demonstrations.
The data can be loaded by calling
FoldingDemonstrationDataSet(home_dir). We
expose the data as a nested dictionary, embedded in a list.
This enables an intuitive interface for accessing the data by

iterating over the FoldingDemonstrationDataSet
object and querying specific fields with corre-
sponding key in square brackets. For example,
data[0].annotations['clothing_type']
queries the type of clothing being folded in demonstration
0 while dataset[42][0]['rgb']['left'] returns
the first RGB image of video demonstration 42. A more
complete and general-purpose example can be found in
Listing 3.

from folding_demonstrations.dataset
import FoldingDemonstrationDataSet↪→

# Set to the directory where the
folding demonstrations dataset is
stored

↪→

↪→

home_dir =
'/media/data/folding_data_output'↪→

# Load the data
dataset = FoldingDemonstrationDataSet( c

home_dir)↪→

# Iterate over data and query
available information↪→

for sample in dataset:
random_frame_nr = 42
frame = sample[random_frame_nr]
rgb_left = frame['left']['rgb']
rgb_middle = frame['middle']['rgb']
rgb_right = frame['right']['rgb']
depth_l = frame['left']['depth']
depth_m = frame['middle']['depth']
depth_r = frame['right']['depth']
subtask = frame['subtask']
reward = frame['reward']
pose = frame['pose']

Listing 3: Example code how to query the dataset

Conclusion

In this paper, we introduce a video dataset with human
demonstrations of folding textile, captured via a citizen
crowdsourcing project. With this dataset, we aim to fill in
a gap in learning deformable objects manipulation, boot-
strapped by human examples. We provide 1000 demonstra-
tions with RGB images, depth frames, and joint pose trajec-
tories captured from three perspectives simultaneously. We
labelled the data with subtask annotations, folding method,
and textile type. Our goal is to provide robotics researchers
with a real-world dataset to accelerate the learning from
human demonstrations for deformable object manipulation.
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