
Towards a Deeper Understanding of Nonmonotonic Reasoning with Degrees

Marjon Blondeel ∗
Advisors:

Steven Schockaert †, Dirk Vermeir ‡, Martine De Cock §

1 Introduction
Answer set programming (ASP) [Baral, 2003] is a form of
declarative programming that can be used to model combina-
torial search problems in a concise and declarative manner.
One of the advantages of ASP is the fact that it works non-
monotonically. On the contrary, classical logic works mono-
tonically: when new knowledge is added, the set of conclu-
sions that can be inferred grows. Hence it is not really suitable
to imitate human reasoning since humans constantly revise
their knowledge when new information becomes available.
In ASP, nonmonotonicity is obtained by using a special op-
erator “not”, the negation-as-failure operator. An expression
of the form not a is “true” when we fail to derive a, whereas
¬a, the negation of a, is “true” if we can derive ¬a.

For example, consider the following ASP program.

r1 : suitable ← certificate ∧ not criminal-record
r2 : certificate ← true

Rule r1 informally means that a person is suitable for a job if
there is no reason to think that he has a criminal record and
if we can establish that he has a certificate. A rule such as r2
is called a fact; the head “certificate” is unconditionally true.
Given such a program, the idea is to find a minimal set of
literals that can be derived from the program. These “answer
sets” then correspond to the solutions of the original search
problem.

Unfortunately, ASP is not directly suitable for expressing
continuous optimization problems since it is limited to ex-
pressing problems in Boolean logic. For example, suppose
one wants to travel by car from one city to another in win-
ter. The driving time that is needed to do this depends on
several factors; for instance the amount of snow, the distance
and the traffic. These concepts are a matter of degree rather
than Boolean properties, thus we cannot directly use ASP to
∗Vrije Universiteit Brussel, Department of Computer Science,

Pleinlaan 2, 1050 Brussel, Belgium, mblondee@vub.ac.be, Funded
by a joint Research Foundation-Flanders (FWO) project
†Cardiff University, School of Computer Science

and Informatics, 5 The Parade, Cardiff, CF24 3AA,
s.schockaert@cs.cardiff.ac.uk
‡Vrije Universiteit Brussel, Department of Computer Science,

Pleinlaan 2, 1050 Brussel, Belgium, dvermeir@vub.ac.be
§Ghent University, Department of Applied Mathematics, Com-

puter Science and Statistics (S9), Krijgslaan 281, 9000 Gent, Bel-
gium, martine.decock@ugent.be

model this problem. One solution to this problem is to allow
propositions to be true to a certain degree in [0, 1] and to gen-
eralize the syntax and semantics of ASP using fuzzy logics
[Hájek, 1998]. We can then write a rule

driving time ← f(snow, distance, traffic)

where “driving time”, “snow” , “distance” and “traffic” now
have to be seen as atoms that can be assigned a degree in
[0, 1]. The function f defines how these degrees have to be
combined to establish the driving time.

Fuzzy answer set programming (FASP) (see [Blondeel et
al., 2013c] for an introduction to the topic) is a generalization
of answer set programming (ASP) based on fuzzy logics. In
FASP, a continuous search problem is translated into a set of
rules α ← β where the body β and the head α are built from
literals, expressions of the form not a with a a literal, con-
stants and connectives that can in principal be interpreted by
arbitrary [0, 1]n → [0, 1]-mappings. Such a rule now intu-
itively means that the truth degree of α must be greater than
or equal to the truth degree of β. Answer sets of FASP pro-
grams are then mappings from the set of literals into [0, 1].

Since it is a relatively new concept, little is known about the
computational complexity of FASP and almost no techniques
are available to compute answer sets of FASP programs. Fur-
thermore, the connections of FASP to other paradigms of
nonmonotonic reasoning with continuous values are largely
unexplored. In our dissertation, we contribute to the ongoing
research on FASP on two different levels:
• Complexity issues (Section 2) We have pinned down

the complexity of the direct syntactical generalization
of classical ASP to FASP, and we have developed an
implementation into bilevel linear programming for this
type of programs. For another class of FASP programs
with more syntactic freedom, we showed a connection
to an existing open problem about the complexity of in-
teger equations, indicating that settling the complexity
of FASP programs in this case will not be an easy task.
• Connection to fuzzy modal logics (Section 3) We com-

bined the paradigms of fuzzy logic and autoepistemic
logic into fuzzy autoepistemic logic, and showed that
the latter generalizes FASP. Furthermore, we have intro-
duced generalizations of classical propositional modal
logics of belief, and we have obtained a generalization
of a known result on the relationship between stable ex-
pansions, belief sets and “only believing” operators. Our

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55781642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ongoing work deals with fully developing this “only be-
lieving” logic to obtain a better understanding of the na-
ture of fuzzy autoepistemic logic and hence of FASP.

2 Complexity issues
We have analyzed the computational complexity of FASP
under Łukasiewicz semantics in [Blondeel et al., 2013b].
Łukasiewicz logic is a particular kind of fuzzy logic that is
often used in applications because it preserves many desir-
able properties from classical logic. Given a FASP program
P , a literal l and a value λl ∈ [0, 1] ∩Q, we are interested in
the following decision problems:

1. Existence: Does there exist an answer set I of P ?

2. Set-membership: Does there exist an answer set I of P
such that I(l) ≥ λl?

3. Set-entailment: Is I(l) ≥ λl for each answer set I of
P ?

For programs with rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

where ⊕ and ⊗ are resp. the Łukasiewicz disjunction and
conjunction, we showed that the complexity of the main rea-
soning tasks is located at the first level of the polynomial hi-
erarchy although for classical ASP it is located at the second
level. This is due to the fact that we can use linear program-
ming to verify yes instances of the decision problems in poly-
nomial time. Moreover, we provided a reduction from reason-
ing with such FASP programs to bilevel linear programming,
thus opening the door to practical applications.

For the subclass of programs in which negation-as-failure
is not allowed and where there is at most one literal in the
head of each rule, we showed that the answer set can be found
in polynomial time. Surprisingly, when allowing disjunc-
tions to occur in the body of rules – a syntactic generalization
which does not affect the expressivity of ASP in the classi-
cal case – the picture changes drastically. Reasoning tasks
are then located at the second level of the polynomial hierar-
chy and for simple FASP programs, i.e. programs in which
negation-as-failure and negation do not occur and in which
each rule has exactly one atom in the head, we have not been
able to pin down the complexity yet. More specifically, we
have an algorithm to find the unique answer set of these pro-
grams in pseudo polynomial time but whether this problem is
NP-complete remains an open problem. Moreover, the con-
nection to an existing open problem about the complexity of
integer equations [Bjorklund et al., 2003] suggests that the
problem of fully characterizing the complexity of FASP in
this more general setting is not likely to have an easy solu-
tion. Another possibly even more intriguing and fundamental
open research question is whether there exists a FASP pro-
gram in which each head contains at most one literal without
answer sets. Other future work is to study the complexity
under other semantics.

3 Connection to fuzzy modal logics
Autoepistemic logic is an important formalism for nonmono-
tonic reasoning. It extends propositional logic by offering the

ability to reason about an agent’s (lack of) beliefs. More pre-
cisely, these beliefs are a set of sentences in a propositional
language augmented by a modal operator B. Moreover, au-
toepistemic logic is well known to generalize the stable model
semantics of ASP [Gelfond and Lifschitz, 1988]. In [Blon-
deel et al., 2013a] we combined the ideas of autoepistemic
logic and fuzzy logic to a fuzzy autoepistemic logic which
can be used to reason about one’s beliefs in the degrees to
which properties are satisfied. We showed that, like in the
classical case, fuzzy autoepistemic logic generalizes FASP.

On the other hand, there are well known links between
autoepistemic logic and several nonmonotonic modal logic
systems. In ongoing work we are investigating how fuzzy
autoepistemic logic can be studied in many-valued modal
settings. In particular, we have introduced generalizations
of classical propositional modal logics of belief based on
finitely-valued Łukasiewicz logic for which we obtained
completeness w.r.t appropriate Kripke style semantics and
for which we could prove NP-completeness for the satisfia-
bility problem. We obtained a generalization of Levesque’s
[Levesque, 1990] result on the relationship between stable
expansions, belief sets and “only believing” operators. In fu-
ture work, by fully developing this ”only believing” logic we
want to obtain a better understanding of the nature of fuzzy
autoepistemic logic and hence of FASP.

References
[Baral, 2003] C. Baral. Knowledge Representation, Reason-

ing and Declarative Problem Solving. Cambridge Univer-
sity Press, 2003.

[Bjorklund et al., 2003] H. Bjorklund, S. Sandberg, and
S. Vorobyov. Complexity of model checking by iterative
improvement: the pseudo-boolean framework. In Proc. of
the 5th Andrei Ershov Memorial Conference “Perspectives
of System Informatics”, pages 381–394, 2003.

[Blondeel et al., 2013a] M. Blondeel, S. Schockaert, M. De
Cock, and D. Vermeir. Fuzzy autoepistemic logic and its
relation to fuzzy answer set programming. To appear in
Fuzzy Sets and Systems, 2013.

[Blondeel et al., 2013b] M. Blondeel, S. Schockaert, D. Ver-
meir, and M. De Cock. Complexity of fuzzy answer set
programming under Łukasiewicz semantics. Submitted,
2013.

[Blondeel et al., 2013c] M. Blondeel, S. Schockaert, D. Ver-
meir, and M. De Cock. Fuzzy answer set programming:
An introduction. In Soft Computing: State of the Art
Theory and Novel Applications, volume 291 of Studies in
Fuzziness and Soft Computing. Springer, 2013.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proc. of the 5th International Conference and Symposium
on Logic Programming, pages 1070–1080, 1988.

[Hájek, 1998] P. Hájek. Metamathematics of Fuzzy Logic.
Trends in Logic, 1998.

[Levesque, 1990] H.J. Levesque. All I know: A study in au-
toepistemic logic. Artificial Intelligence, pages 263–309,
1990.


