
Demo Abstract: Building embedded applications via REST
services for the Internet of Things

Floris Van den Abeele, Jeroen Hoebeke, Isam Ishaq, Girum K Teklemariam, Jen
Rossey, Ingrid Moerman, Piet Demeester
Department of Information Technology (INTEC)

Ghent University – iMinds
{fvdabeele,jhoebeke,iishaq,gketema,jrossey,imoerman,pietdm}@intec.ugent.be

ABSTRACT
As embedded networks are evolving to open systems, it’s be-
coming possible to create new applications on top of these
existing embedded systems. However, developing new appli-
cations can be difficult due to the large diversity of protocols
that exist today. In this paper, the authors demonstrate how
employing the CoAP protocol can enable rapid application
development by re-using well-known principles from the Web
development world. Furthermore, we also demonstrate how
a number of extensions to CoAP help to lower the barrier
for developing applications even further.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

1. INTRODUCTION
In recent years we’ve seen how embedded networks have

been evolving from closed, self-contained systems to open
and accessible systems. In the past, an embedded deploy-
ment would typically be a tightly vertically integrated struc-
ture. This tight integration meant that re-using such net-
works for applications different than the one it was originally
designed for, was often difficult and time consuming. Today
however, a lot of these embedded networks have opened up
their doors. One of the key drivers for this evolution has
been the ongoing adoption of open standards. For instance,
the IETF 6LoWPAN working group has defined an adaption
layer [1] for IEEE 802.15.4 networks (a popular networking
technology for embedded networks) that has allowed embed-
ded devices to become 1st class citizens of the IPv6 Internet.
In doing so, 6LoWPAN has made end-to-end IPv6 connec-
tivity possible with any other IPv6 host.

In a next step, the IETF looked at standardizing a pro-
tocol for exchanging information with constrained devices.
Thus, the Constrained RESTful Environments (CoRE) work-
ing group and the CoAP [2] protocol were born. CoAP

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SenSys’13, Nov 11–15, 2013, Roma, Italy.
ACM 978-1-4503-2027-6/13/11
http://dx.doi.org/10.1145/2517351.2517426 ...$15.00.

proposes to employ a Web like REST architecture to struc-
ture embedded applications. Applications are structured by
splitting them up into REST resources that reside on the
embedded device. Communication follows a simple request-
response model where clients query REST resources to re-
trieve information or to control the device and its physical
environment. This makes creating applications for embed-
ded devices very similar to Web service development.

The authors combine the CoAP protocol with a number
of extensions to demonstrate how one can easily create new
applications on top of embedded networks.

2. EXTENSIONS ON TOP OF COAP
A lot of extensions that run on top of the CoAP pro-

tocol are currently under development. As some of these
will be demonstrated in this demo, a short overview is pre-
sented here. One of these extensions, “Conditional observe
in CoAP”[3], extends the publish/subscribe mechanism from
CoAP with server-side filtering of notifications. Instead of
having to subscribe for all state changes of a resource and
applying client-side filtering, a client can instead subscribe
for specific events in which it is interested. Another exten-
sion that will be demonstrated is the use of a messaging
(de)multiplexer, as defined in the CoAP Entities [4] Inter-
net draft. This so-called “Entity Manager” allows clients to
access groups of embedded devices even when multicast IP is
not supported in the embedded network. Finally, the“CoRE
Resource Directory” [5] is a REST service where embedded
devices and their resources can be registered and where an
application can search for resources.

3. SYSTEM OVERVIEW

Figure 1: Overview of components

Figure 1 gives an overview of the different components
that are used in the demonstration. The network pictured
on the right consists of 7 embedded devices in the form of
Zolertia Z1’s boards that are running the Contiki operating
system. Each of these devices has been equipped with a
number of sensors and actuators. The sensors include light
intensity, temperature, proximity, movement (PIR), force,
RFID and magnetic switch sensors. Supported actuators
include multiple lights (in the form of LEDs) and a cooling
fan. These sensors and actuators each have a corresponding
REST resource, which implement the conditional observe
extension if useful. The gateway is shown in the center of
the figure and runs on an Alix system board. Apart from
routing traffic and applying 6LoWPAN, the gateway also
provides three other services: a discovery process (DISC),
the entity manager (EM) and the resource directory (RD).
Each of these services has been implemented in our modular
CoAP framework in Click Router. The discovery process is
in essence a periodic poll from the gateway to all devices in
the embedded network, the specifics of which are described
in [6]. The personal computer client on the bottom-left is
only running the client module of our CoAP framework com-
bined with a GUI that implements and represents the sce-
narios from section 4. The tablet client in the top-left is a
non-native CoAP device that can interact with the embed-
ded devices via a HTTP/CoAP cross-protocol proxy that is
running on the gateway (proxy not shown in figure).

4. DEMONSTRATION
We have developed a total of six home automation sce-

narios on top of a portable embedded network that illus-
trate how the presented extensions can be used to ease the
creation of applications. To illustrate how each of the ex-
tensions is used, two of the six scenarios are explained in
greater detail; the other four are only briefly mentioned.

The first scenario occurs when a new device is deployed
in the embedded network. After joining the network, the
device and its resources are discovered by the gateway. The
gateway subsequently adds the device and its resources to
the resource directory. Clients querying the directory will
notice that the directory has been updated and can build
applications on top of the discovered resources. The other
scenarios actually use this information to build their appli-
cations. So, in all other scenarios we assume that this first
scenario has already been completed.

The conditional observe and entity extensions are illus-
trated in this second scenario. Here, the application is to
switch on the lights whenever the light intensity drops be-
low 500 Lux. The client (C) starts by grouping all the
lighting actuator resources (A,B,C) into a “/lights” entity
on the gateway (GW). This is done via a CoAP POST re-
quest to the /em resource provided by the entity manager.
In a second configuration step, the client subscribes to the
light intensity resource (S), asking to be notified whenever
the measured value drops below 500 Lux. After completing
the configuration, the light intensity sensor is covered with
a dark cloth. This will trigger a notification from the light
intensity sensor, in response to which the client is configured
to send a CoAP POST request to the resource /light resid-
ing on the entity manager to turn on the lights. The entity
manager takes cares of sending a request to each of the in-
dividual lighting actuators and replies with an aggregated
response to the client when it has received a confirmation

from every lighting actuator in the entity. The COAP URIs
corresponding to A,B,C and S have been determined as the
result of scenario 1. The scenario is illustrated in figure 2.

Figure 2: Interactions in scenario 2

The other four scenarios are similar to the previous one
and are briefly listed here. In scenario 3, a rise of tempera-
ture activates the fan actuator. In the fourth scenario, the
arrival of a miniature car opens the door (represented by
a green LED) and turns on the lighting if it is dark. In
the fifth scenario, the client is configured to alert the user
via text and/or twitter when movement is detected by the
PIR sensor. In the last scenario, the door is opened when a
(configurable) tag is read by the RFID reader.

5. ACKNOWLEDGMENTS
Part of the research leading to these results has received

funding from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n°258885
(SPITFIRE project). This research is also partially funded
by the O’CareCloudS project, a project cofunded by iMinds
(Interdisciplinary Institute for Technology). iMinds is a re-
search institute founded by the Flemish Government.

6. REFERENCES
[1] J. Hui and P. Thubert. Rfc 6282: Compression format

for ipv6 datagrams over ieee 802.15.4-based networks.

[2] Z. Shelby, K. Hartke, and C. Bormann. Constrained
application protocol (coap) (ietf internet draft v18).

[3] Girum Teklemariam, Jeroen Hoebeke, Ingrid Moerman,
and Piet Demeester. Facilitating the creation of iot
applications through conditional observations in coap.
EURASIP Journal on Wireless Communications and
Networking, 2013(1):177, 2013.

[4] I. Ishaq, J. Hoebeke, and F. Van den Abeele. Coap
entities (ietf internet draft v0)).

[5] Z. Shelby, S. Krco, and C. Bormann. Core resource
directory (ietf internet draft v5)).

[6] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter,
I. Moerman, and P. Demeester. Facilitating sensor
deployment, discovery and resource access using
embedded web services. In Sixth International
Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, 2012.

