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Abstract

Iterated deferred correction is a widely used approach to the numerical solution of 4rst-order systems of nonlinear
two-point boundary value problems. Normally, the orders of accuracy of the various methods used in a deferred correction
scheme di5er by 2 and, as a direct result, each time deferred correction is used the order of the overall scheme is increased
by a maximum of 2. In [16], however, it has been shown that there exist schemes based on parameterized Runge–Kutta
methods, which allow a higher increase of the overall order. A 4rst example of such a high-order convergent scheme
which allows an increase of 4 orders per deferred correction was based on two mono-implicit Runge–Kutta methods. In
the present paper, we will investigate the possibility for high-order convergence of schemes for the numerical solution
of second-order nonlinear two-point boundary value problems not containing the 4rst derivative. Two examples of such
high-order convergent schemes, based on parameterized Runge–Kutta-Nystr+om methods of orders 4 and 8, are analysed
and discussed. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the present paper we will be concerned with the numerical solution of second-order two-point
boundary value problems (BVPs) of the form

y′′ = f(x; y); a6x6b; g(y(a); y′(a); y(b); y′(b)) = 0 (1.1)

with y ∈ Rd, f :R×Rd → Rd and g :Rd ×Rd ×Rd ×Rd → R2 d. The speci4c form of the boundary
conditions will not be central in this paper. Although it is straightforward to convert a second-order
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system to a 4rst-order one, it is well-known that several advantages (including substantial gains in
eFciency, lower storage requirements, etc.) are realized when the equations can be treated in their
original second-order form. A popular class of numerical methods which allows this is the class
of Runge–Kutta–Nystr+om (RKN) methods. In this paper we will use these methods in a deferred
correction (DC) framework.

Iterated DC is a widely used technique for the solution of 4rst-order BVPs. For second-order BVPs,
Daniel and Martin [10] describe Numerov’s method in combination with the deferred correction
technique. As so far the technique has not been applied on RKN methods for second-order BVPs.
A single step of a typical DC scheme based on implicit Runge–Kutta(–Nystr+om) formulae can be
de4ned as follows:

Let 	; 	∗ be two Runge–Kutta(–Nystr+om) formulae of order p and p∗ respectively where p¡p∗.
Consider the algorithm de4ned by

	(�) = 0;

	( K�) =−	∗(�): (1.2)

Then, providing that 	 and 	∗ have certain special properties, the DC scheme de4ned by (1.2) is of
order min(p∗; 2p). Algorithms of this type based on parameterized implicit Runge–Kutta methods
have been derived in [5–7] (based on mono-implicit methods) and in [2,9] (based on Lobatto meth-
ods). Two codes TWPBVP and ACDC which implement DC schemes are available from NETLIB.

In what follows we will consider the rather more general DC scheme

	(�) = 0;

	( K�) =  (�): (1.3)

A general framework for proving accuracy results for DC schemes of the form (1.3) was given in
an inMuential paper by Skeel [13]. We present his main theorem.

Consider the approximate numerical solution of (1.1) on a mesh

� : a= x0 ¡x1 ¡ · · ·¡xN+1 = b:

Denote by Nz the restriction of the continuous solution z(x) of (1.1) to the 4nite grid �. Then we
have the following theorem:

Theorem 1. Let 	 be a stable numerical method and assume that the following conditions hold
for the DC scheme (1:3):

(i) ‖�−Nz‖=O(hp);
(ii) ‖ (Nz)− 	(Nz)‖=O(hr+p),
(iii)  (Nu) = O(hr)

for arbitrary functions u having at least r continuous derivatives. Here ‖:‖ is a suitable 9nite norm
de9ned in [13] and h is the maximum grid spacing.
If 	( K�) =  (�) then

‖ K�−Nz‖=O(hmin(2p;r+p)):
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The feature that is common to most of the DC schemes that have been derived so far is that r = 2
and for these schemes the order of accuracy is increased by 2 for each application of the DC. In
[2] a suFcient condition to achieve this increase in accuracy was given and this was basically that
the Runge–Kutta formulae 	 and 	∗ should be symmetric and that they should be written in a
special way that is appropriate for BVPs. This condition is of course straightforward to satisfy. The
main reason why it is hard to get more than two orders of accuracy improvement per iteration is
the diFculty in satisfying condition (iii) for r ¿ 2. In [16], the question was addressed of whether
it is possible for 4rst-order systems to choose 	 and 	∗ such that high-order convergent schemes
emerge, i.e., schemes for which r ¿ 2 can be achieved. The necessary and suFcient conditions to
obtain a certain value for r were established and a pair of MIRK formulae of orders 4 and 8 was
constructed to show that it is possible to achieve this high-order convergence and that the resulting
DC schemes have potential advantages over the other DC schemes that have been derived so far.

In this paper on second-order systems, we will again focus on this question of high-order conver-
gence. We will analyse the necessary and suFcient conditions to obtain a certain value for r and
we will construct an example to illustrate our results. Further, we will also discuss linear stabil-
ity properties. Before performing this analysis we 4rst brieMy recall the concepts of parameterized
(mono-)implicit RKN methods.

2. Parameterized (mono-)implicit Runge–Kutta–Nystr"om methods

For the numerical solution of second-order IVPs we presented the following representation of
s-stage implicit RKN methods, known as parameterized implicit RKN (PIRKN) methods [14,17,18]:

yn+1 = yn + hny′
n + h2n

s∑
i=1

Kbif(xn + cihn; Yn; i);

y′
n+1 = y′

n + hn

s∑
i=1

bif(xn + cihn; Yn; i)

Yn; i = (1− vi)yn + viyn+1 + (ci − vi − wi)hny′
n + wihn y′

n+1

+ h2n
s∑

j=1

xijf(xn + cjhn; Yn; j);

for i = 1; : : : ; s. Hence, a s-stage PIRKN method is completely determined by the tableau

c1 v1 w1 x11 x12 : : : x1s
c2 v2 w2 x21 x22 : : : x2s
...

...
...

...
...

...
...

cs vs ws xs1 xs2 : : : xss

Kb1 Kb2 : : : Kbs

b1 b2 : : : bs

(2.1)
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Comparing the representation (2.1) with the description of a general IRKN method by means of its
Butcher tableau (c; A; Kb; b) [4,11], it is easy to verify that the relationship A = X + v · KbT + w · bT
holds. Thus, there exist many PIRKN methods which correspond to a given RKN method (c; A; Kb; b).
However, given v and w, there is only one corresponding PIRKN method, i.e. the one for which
X = A− v · KbT − w · bT. Therefore, we call v and w the parameters of the PIRKN method.
In general, the use of a s-stage PIRKN method for the solution of (1.1) requires the solution of

systems of equations of dimension Ñ × Ñ , where Ñ ≈ (2+ s)(N +1)d (its exact value depends upon
the speci4c form of the boundary conditions). However, a major reduction of the computational
cost is possible when X is lower triangular. In that case the s internal stages Yn; i can be expressed
in terms of yn and y′

n and we only need to solve numerically systems of algebraic equations of
dimension Ñ × Ñ where Ñ ≈ 2d(N + 1). In analogy with the case of RK methods, we call RKN
methods for which X is lower triangular mono-implicit (MIRKN) methods.

We further restrict ourselves to symmetric methods, a natural choice in the context of BVPs. The
symmetry of 	 and 	∗ then also guarantees the symmetry of the DC scheme (1.2). The conditions of
symmetry for a RKN method (2.1) are well known and can be expressed as follows: if xn and xn+1,
yn and yn+1 as well as y′

n and y′
n+1 are swapped, and h is replaced by −h, then the original method

is obtained. The IRKN tableau (2.1) is a particularly convenient representation for the investigation
of symmetry. The condition for symmetry comes down to the requirement that there must exist a
permutation  of the stages such that for each stage Yn; i there exists a stage Yn; (i) for which

Kb (i) = bi − Kbi; b (i) = bi; c (i) = 1− ci; v (i) = 1− vi;

w (i) = vi + wi − ci; x (i) ( j) = xij: (2.2)

We further recall [11] that a RKN method is of order q if for the local initial value problem with
suFciently smooth solution

y′′(x) = f(x; y); y(xn) = yn; y′(xn) = y′
n;

the numerical solution obeys

y(xn+1)− yn+1 = O(hq+1
n );

y′(xn+1)− y′
n+1 = O(hq+1

n ):

To allow us to have order q, the so-called order conditions [11] have to be ful4lled by the coeFcients
in the Butcher tableau (c; A; Kb; b). For PIRKN methods, these order conditions can be reexpressed in
terms of the parameterized tableau (c; v; w; X; Kb; b). For given values of the parameters v and w the
original set of order conditions (expressed in terms of A) is equivalent to another set of equations
(expressed in terms of X ).
The number of equations to be solved can however be reduced by imposing the stage order

conditions:

C(�) :X:cq =
cq+2 − v

(q+ 2)(q+ 1)
− w

q+ 1
; q= 0; 1; 2; : : : ; � (2.3)

with cq = (cq1; : : : ; c
q
s )

T. This condition ensures that the order of the internal stages is at least �+ 2,
i.e., Yn; i = y(xn + cihn) + O(h�+3

n ); i = 1; 2; : : : ; s.
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3. DC with PIRKN methods

In this section we will examine the diFculties in satisfying condition (iii) of Theorem 1. The
results are obtained by (brute force) Taylor series expansion as in [15,16]. Although we feel a little
disappointed that we have not been able to obtain our results by using a more elegant approach
(e.g. using rooted trees) we are happy that the results we obtain can be presented in a way which
is easy to understand.

Suppose we want to approximate the solution of the BVP (1.1) on the mesh � and let h=maxi hi

where hi:=xi+1 − xi. Let Ny and Ny′ be the restriction to the grid � of the continuous functions
y(x) and y′(x) respectively where y(x) is the solution of (1.1) and let � and �∗ be approximations
to Nz = (Ny;Ny′)T. Further, we denote u = (#; $)T with # and $ arbitrary functions de4ned over
the integration interval.

As already mentioned, in our case 	 will correspond to a PIRKN method of order p and  :=	−	∗

where 	∗ corresponds to a PIRKN method of order p∗ ¿p (we will systematically denote the
quantities that relate to 	∗ with a ∗-superscript : s∗, a∗ij, Kb

∗
i , b

∗
i , c

∗
i , or s∗, x∗ij, Kb

∗
i , b

∗
i , c

∗
i , v

∗
i , w

∗
i in

parameterized form).
For 	 we have

	(Nu)n:=




#n+1−#n
hn

− $n − hn

s∑
i=1

Kbif(xn + ci hn; Yn; i)

$n+1−$n

hn
−

s∑
i=1

bif(xn + ci hn; Yn; i)


 (3.1)

with

Yn; i = (1− vi) #n + vi#n+1 + hn(ci − vi − wi)$n + hnwi$n+1

+ h2n
s∑

j=1

xijf(xn + cjhn; Yj)

= #n + hnvi#′n +
h2n
2
vi#′′n +

h3n
3!

vi#(3)n + · · ·+ hq
n

q!
vi#(q)n + · · ·

+ hn (ci − vi)$n + h2nwi$′
n +

h3n
2
wi$′′

n + · · ·+ hq
n

(q− 1)!
wi$(q−1)

n + · · ·

+ h2n
s∑

j=1

xij[fn + hncj xfn + hn (vj #′n + (cj − vj)$n) yfn + · · · ] + · · ·

= #n + hn (vi #′n + (ci − vi)$n) + h2n

(
vi
2
#′′
n + wi $′

n + (X · e)i fn

)

+ h3n

(
vi
3!

#(3)n +
wi

2
$′′
n + (X · c)i xfn + {(X · v)i #′n + (X · (c − v))i $n} yfn

)
+O(h4n)

= #n + &1; i hn + &2; i h2n + &3; i h3n +O(h4n)
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whereby the superscript denotes derivatives and the subscript n indicates that all evaluations are at
x = xn. Further e (also denoted as es) is the s-vector with unit entries and &j = (&j;1; &j;2; : : : ; &j; s)T,
(j ∈ {1; 2; 3}):

f(xn + ci hn; Yn; i) =fn + hn (ci xfn + &1 yfn) + h2n

(
c2i
2

xxfn + ci &1 xyfn +
&2
1

2
yyfn + &2 yfn

)

+ h3n

(
c3i
6

xxxfn +
c2i
2

&1 xxyfn +
ci
2
&2
1
xyyfn +

&3
1

6
yyyfn

+ &3 yfn + ci &2 xyfn + &1 &2 yyfn

)

+O(h4n)

where

&1 = c$n + v (#′
n − $n);

&2 = (A · e)fn +
v
2
(#′′n − fn) + w ($′

n − fn);

&3 = (A · c) (xfn + $n
yfn) +

v
6
(#(3)n − (xfn + $n

yfn)) +
w
2
($′′

n − (xfn + $n
yfn))

+ (X · v) (#′
n − $n) yfn

such that for Bi ∈ {bi; Kbi} and B ∈ {b; Kb},
s∑

i=1

Bi f(xn + ci hn; Yn; i)

=(BT · e)fn + hn[BT · c (xfn + $n
yfn) + BT · v (#′

n − $n) yfn]

+ h2n

[
1
2
BT · c2 (xxfn + 2$n

xyfn + $2
n
yyfn) + BT · (c v) (#′

n − $n) (xyfn + $n
yyfn)

+
1
2
BT · v2(#′n − $n)2 yyfn +

(
BT · A · efn +

1
2
BT · v (#′′

n − fn) + BT · w ($′
n − fn)

)
yfn

]

+ h3n

[
1
6
BT · c3 (xxxfn + 3$n

xxyfn + 3$2
n
xyyfn + $3

n
yyyfn)

+
1
2
BT · (c2 v) (xxyfn + 2$n

xyyfn + $2
n
yyyfn) (#′n − $n)

+
1
2
BT · (c v2) (xyyfn + $n

yyyfn)(#′
n − $n)2 +

1
6
BT · v3 yyyfn (#′n − $n)3

+
(
BT · (cA · e)fn +

1
2
BT · (c v) (#′′

n − fn) + BT · (c w) ($′
n − fn)

)
(xyfn + $n

yyfn)
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+
[
BT · (vA · e)fn +

1
2
BT · v2 (#′′n − fn) + BT · (vw) ($′

n − fn)
]
(#′n − $n) yyfn

+
[
(BT · A · c)(xfn + $n

yfn) +
1
6
BT · v (#(3)

n − (xfn + $n
yfn))

+
1
2
BT · w ($′′

n − (xfn + $n
yfn)) + BT · X · v (#′

n − $n) yfn

]
yfn

]

+O(h4n): (3.2)

If y′′(x) = f(x; y(x)) (i.e. #= y and $ = y′), then the components of 	(Nz)n become

1	n = hn

(
1
2!

− Kb
T · e

)
fn + h2n

(
1
3!

− Kb
T · c

)
(xfn +yfn y′

n)

+ h3n

[(
1
4!

− 1
2
Kb
T · c2

)
(xxfn + 2 xyfn y′

n +
yyfn y′2

n ) +
(
1
4!

− Kb
T · A · e

)
yfn fn

]
+O(h4n);

2	n = (1− bT · e)fn + hn

(
1
2!

− bT · c
)
(xfn +yfn y′

n)

+ h2n

((
1
3!

− 1
2
bT · c2

)
(xxfn + 2 xyfn y′

n +
yyfn y′2

n ) +
(
1
3!

− bT · A · e
)

yfn fn

)

+ h3n

((
1
4!

− 1
6
bT · c3

)
(xxxfn + 3 xxyfn y′

n + 3 xyyfn y′2
n +yyyfn y′3

n )

+
(
1
8
− bT · (cA · e)

)
(xyfn +yyfn y′

n)fn +
(
1
4!

− bT · A · c
)
(xfn +yfn y′

n)
yfn

)

+O(h4n):

One notices that, if the series expansion is carried out as far as O(hp
n ), in this way all the order

conditions to achieve order p can be recognised. It thus becomes clear that the term in hi
n, 06i6p−1

becomes zero when the method is of order p. We thus have 	(Nz)n = O(hp
n ). So the assumption

(i) is a representation of the global error of the method 	 with p the order of the method.
In the same way the condition (ii) of Theorem 1 expresses the order of the residual with the

higher-order method 	∗. Analogous to the previous derivation, 	∗(Nz)n =O(hp∗
n ) can be deduced.

The value r from assumption (iii) follows from the expansion of

 (Nu)n =


−hn (

∑s

i=1
Kbi f(xn + ci hn; Yn; i)−

∑s∗

i=1
Kb
∗
i f(xn + c∗i hn; Y ∗

i ))

−
∑s

i=1
bi f(xn + ci hn; Yn; i) +

∑s∗

i=1
b∗i f(xn + c∗i hn; Y ∗

i )


 :

To analyse this expression, we start from (3.2). The coeFcient of hi
n in j	(Nu)n (j ∈ {1; 2}) is an

expression which contains combinations of partial derivatives (elementary di5erentials) multiplied
by coeFcients, which are expressed in terms of the letters Kb (4rst component) and b (second
component), and A, X , c, v, w and e. Some of these coeFcients have 4xed values since the order
conditions up to order p are ful4lled. These conditions are also ful4lled for the higher-order method
	∗, such that these terms no longer appear in the expression  (Nu) = 	(Nu)− 	∗(Nu). The other
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terms in  (Nu) (for which the coeFcients contain at least one of the parameters) do not vanish
automatically. However, they will vanish as well whenever they have the same value in 	 and 	∗.
Therefore, we can conclude that  (Nu) = O(hr

n) where r =min(p; q), q=max{i|Ei = 0} and
E1:=0;

E2:=|bT · v− b∗T · v∗|;

E3:=|bT · (c v)− b∗T · (c∗ v∗)|+ |bT · v2 − b∗T · v∗2|+ |bT · w − b∗T · w∗|+ | KbT · v− Kb
∗T · v∗|;

E4 := |bT · v3 − b∗T · v∗3|+ |bT · (c v2)− b∗T · (c∗ v∗2)|+ |bT · (c2 v)− b∗T · (c∗2 v∗)|
+ |bT · (c w)− b∗T · (c∗ w∗)|+ |bT · (vw)− b∗T · (v∗ w∗)|+ |bT · X · v− b∗T · X ∗ · v∗|
+ bT · ((X · e) v)− b∗T · ((X ∗ · e∗) v∗)|
+ | KbT · v− Kb

∗T · v∗|+ | KbT · w − Kb
∗T · w∗|+ | KbT · (c v)− Kb

∗T · (c∗ v∗)|+ | KbT · v2 − Kb
∗T · v∗2|;

E5:= · · · :
The following rule of thumb can be used to construct Ei: this expression contains all meaningfull
strings of weight i that start with b or Kb and end with either v or w. The weight of a string is de4ned
as the sum of the weights of its letters where Kb, X and w have weight two, b, c and v weight one
and e weight zero. We remark that the weight of a string that expresses an order condition of order
i is just i by this de4nition.

In the case of 4rst-order systems Ei contains similar expressions [16]: it are all meaningful strings
of weight i that start with b and end with v. The weight of a string is de4ned as the sum of the
weights of its letters where b, X , c, v have weight 1 and e weight 0.
In view of Theorem 1, we can state that the order of the DC scheme (1.2) can be 2p at most. This

is the case if r=p= q and thus p∗ =p+ r=2p. This is in agreement with B+ohmer et al. [3], who
state that a pth-order driver-operator and a p∗th-order target operator (p¡p∗) make a numerical
approximation with order of accuracy min(ip; p∗) at most in the ith iteration. The question now is
how to construct such high-order convergent schemes. We now know that besides the (parameter in-
dependent) order conditions extra (parameter dependent) conditions Ei=0 have to imposed. One may
thus ask whether there exist parameter pairs (v; w) and (v∗; w∗) which guarantee the maximal increase
of order. Due to the above rule which expresses the weight of strings, we have the following result.

Theorem 2. The order of the DC scheme (1:2) will be min{p∗; 2p} if there exist constants
&0; &1; )0; )1 and )2 such that

v= &0e + &1c; w = )0 e + )1 c + )2 c2;

v∗ = &0e∗ + &1c∗; w∗ = )0 e∗ + )1 c∗ + )2 c∗2:

If symmetry is required then 2&0+&1=1 and )0+2)1+2)2=1. In the case of symmetric MIRKN
methods and Lobatto methods, we want to identify the 4rst two rows of the modi4ed tableau with
yn and yn+1. This will be realised when

v= c and w = )2c(c − e); (3.3)

where the choice v= c is the same as in the case of 4rst-order systems.
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The above results can also be extended to the case of iterated DC schemes of the form

	[1](�[1]) = 0;

	[1](�[i]) = 	[1](�[i−1])− 	[i](�[i−1]); i = 2; : : : ; m: (3.4)

Suppose 	[i] is of order pi = ip, then the overall scheme will have order pm =mp if all parameters
v[i] and w[i] are the same linear and quadratic functions of the corresponding c[i] vectors:

v[i] = &0 e[i] + &1 c[i];

i = 1; : : : ; m:

w[i] = )0e[i] + )1 c[i] + )2c[i]
2

;

4. Linear stability of DC schemes

As Asher [1] already remarked, the stability of the deferred correction scheme when h → 0
follows from the stability of the driver-operator. For sti5 problems another type of stability where
the product of the steplength and the eigenvalues of the problem tends to in4nity, is of importance
and will be examined further on.

When applying a PIRKN method with constant mesh size h to the scalar test equation y′′=−+2y
one 4nds(

1 + H 2 Kb
T · U · v H 2 Kb

T · U · w
H 2bT · U · v 1 + H 2bT · U · w

)(
yn+1

hy′
n+1

)
(4.1)

=

(
1− H 2 Kb

T · U · (e − v) 1− H 2 Kb
T · U · (c − v− w)

−H 2bT · U · (e − v) 1− H 2bT · U · (c − v− w)

)(
yn

hy′
n

)
; (4.2)

with U = (Is + H 2 X )−1 and H = + h. This can be expressed in the form

D�n+1 = N�n; D; N ∈ R2d×2d; �n+1; �n ∈ R2d · : (4.3)

The DC scheme (3.4) applied to y′′ =−+2 y then gives

�[1]n+1 = D−1
1 · N1�[1]n ;

�[i]n+1 = D−1
1 · (D1 − Di)�

[i−1]
n+1 + D−1

1 · (Ni − N1) �[i−1]
n + D−1

1 · N1 �[i]n
with i = 2; : : : ; m and Di and Ni as de4ned in (4.3). In particular, for m= 2 we 4nd

�[2]n = Rn�[2]0 +
n−1∑
i=0

Ri · S · Rn−i−1�[1]0 (4.4)

with R= D−1
1 · N1 and S = D−1

1 · (N2 − D2 · D−1
1 · N1). When R and S commute, (4.4) simpli4es to

�[2]n = Rn �[2]0 + nRn−1 · S �[1]0 : (4.5)

Analogous as in [8] we call a RKN method stable if the solutions (4.5) are bounded for each 4nite
n and for each H . To satisfy this type of stability, it is necessary that R and S remain 4nite for
|H | → ∞. This will be taken into consideration when selecting a DC scheme in the following
section.
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5. A high-order convergent DC scheme based on MIRKN methods

In this section we will construct a pair of symmetric MIRKN methods of orders 4 and 8 for which
the order of the overall DC scheme reaches its maximum value, which is 8 according to Theorem 2.

5.1. The fourth-order method

The symmetric fourth-order method with the minimal number of stages is the Gauss method with
s = 2 stages. There is a unique parameterization of the method as a symmetric MIRKN method, if
one chooses )2 = 1

2 in (3.3):

1
2 −

√
3
6

1
2 −

√
3
6 − 1

12 0 0
1
2 +

√
3
6

1
2 +

√
3
6 − 1

12 0 0

1
4 +

√
3

12
1
4 −

√
3

12
1
2

1
2

(5.1)

5.2. The eighth-order method

Our aim is to construct a symmetric MIRKN method of order 8 with the minimum number of
stages and which allows high-order convergence when combined with (5.1) in a DC framework.
Based on (2.2) we propose the nonconMuent scheme

0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

c3 c3 1
2c3 (c3 − 1) x31 x32 0 0 0 0 0 0

1− c3 1− c3 1
2c3 (c3 − 1) x32 x31 0 0 0 0 0 0

c5 c5 1
2c5 (c5 − 1) x51 x52 x53 x54 0 0 0 0

1− c5 1− c5 1
2c5 (c5 − 1) x52 x51 x54 x53 0 0 0 0

c7 c7 1
2c7 (c7 − 1) x71 x72 x73 x74 x75 x76 0 0

1− c7 1− c7 1
2c7 (c7 − 1) x72 x71 x74 x73 x76 x75 0 0

Kb1 b1 − Kb1 Kb3 b3 − Kb3 Kb5 b5 − Kb5 Kb7 b7 − Kb7
b1 b1 b3 b3 b5 b5 b7 b7

(5.2)

To obtain such a scheme, we will fully exploit the symmetry in the modi4ed Butcher tableau.
Therefore, we introduce the matrices

U :=
1
2

(
1 1

1 1

)
; V :=

1
2

(
1 −1

−1 1

)
;
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and write X = Y ⊗ U + Z ⊗ V where

Y =



0 0 0 0

y31 0 0 0

y51 y53 0 0

y71 y73 y75 0


 and Z =



0 0 0 0

z31 0 0 0

z51 z53 0 0

z71 z73 z75 0




with yij = xij + xi; j+1 and zij = xij − xi; j+1. Further, we also de4ne the vector d = e − 2 c and the
diagonal matrices

D[k]
+ = diag

(
1
2
;
(1− d3)k + (1 + d3)k

2k+1
;
(1− d5)k + (1 + d5)k

2k+1
;
(1− d7)k + (1 + d7)k

2k+1

)
;

D[k]
− = diag

(
−1
2
;
(1− d3)k − (1 + d3)k

2k+1
;
(1− d5)k − (1 + d5)k

2k+1
;
(1− d7)k − (1 + d7)k

2k+1

)
:

For these matrices we have the relations
n∑

i=0

(−1)i
(

n

i

)
D[n+i]

− = 0 and
n∑

i=0

(−1)i
(

n

i

)
(n+ i)D[n+i−1]

+ = 0: (5.3)

The order conditions can now be solved as follows:

1. The quadrature conditions bT · c2i = 1=(2i + 1); i = 0; 1; : : : ; 3 determine the vector b in terms of
c3; c5 and c7.

2. Imposing the relation Kb= b(e − c) [11] and stage order 3, only 5 order conditions are left:

bT · X · c2 = 1
360 : (a) BT · Y · D[2]

+ · e4 = 1
720 ;

bT · (c2X · c2) =− 1
1680 : (b) BT · D[2]

+ · Y · D[2]
+ · e4 + BT · D[2]

− · Z · D[2]
− · e4 =− 1

3360 ;

bT · (cX · c3) = 1
1120 : (c) BT · D[1]

+ · Y · D[3]
+ · e4 + BT · D[1]

− · Z · D[3]
− · e4 = 1

2240 ;

bT · X · c4 = 1
210 : (d) BT · Y · D[4]

+ · e4 = 1
420 ;

bT · X 2 · c2 =− 1
15120 : (e) BT · Y 2 · D[2]

+ · e4 =− 1
30240 ;

where BT = (b1; b3; b5; b7).
3. Stage order 2 implies X · e = 0 and since

X · e= (Y ⊗ U + Z ⊗ V ) · (e4 ⊗ e2)

= Y · e4 ⊗ e2; (5.4)

we have Y ·e4=0. Eqs. (a) and (d) combined with BT ·Y ·e4=0 which follows from (5.4), form a
linear system which determines the components of BT ·Y =(b5y51 + b7y71; b5y53 + b7y73; b7y75; 0).
Together with Y ·e4=0, this determines the unknowns y51; y53; y71 and y73 in terms of y75; d3; d5

and d7.
4. One of the conditions that is identically satis4ed if stage order 3 holds is

bT · (cX · c) =− 1
720

: (f ) BT · D[1]
+ · Y · D[1]

+ · e4 + BT · D[1]
− · Z · D[1]

− · e4 =− 1
1440

:
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Since D[1]
+ is a scalar matrix and Y · e4 = 0 and D[2]

− = D[1]
− one has

BT · D[2]
− · Z · D[2]

− · e4 =− 1
1440

such that condition (b) can be replaced by BT ·D[2]
+ · Y ·D[2]

+ · e4 = 1
2520 . This yields the remaining

y75 in terms of d3, d5 and d7 and all yij coeFcients are now 4xed in terms of d3; d5 and d7.
Substituting the values in (e) one 4xes the value d7 = 1=

√
3.

5. Finally, we have to determine the zij coeFcients. The only condition which has not been used so
far is condition (c), which, due to D[1]

+ −3D[2]
+ +2D[3]

+ =0 obtained from (5.3) can be reformulated
as

BT · D[1]
− · Z · D[3]

− · e4 =− 1
1680

:

Stage order 3 gives

X · c = 1
48

d(e − d2);

where X · c = Z · D[1]
− · e4. This results in a system of four equations in six unknowns zij.

We thus 4nd the following family of methods which depends on 4 free parameters d3; d5; z53
and either z73 or z75:

b1 =
6− 7d2

3 − 7d2
5

105(d2
3 − 1)(d2

5 − 1)
;

b3 =
2(7d2

5 + 1)
105(d2

3 − 1)(3d2
3 − 1)(d2

5 − d2
3)

;

b5 =
2(7d2

3 + 1)
105(d2

5 − 1)(3d2
5 − 1)(d2

3 − d2
5)

;

b7 =
9(3− 7d2

5 − 7d2
3 + 35d2

3d
2
5)

70(3d2
3 − 1)(3d2

5 − 1)
�= 0;

Kbi = bi
1 + di

2
; i = 1; : : : ; 4;

y31 = 0; y51 =−y53; y71 =−y73 − y75;

y53 =− (d2
3 − d2

5)(d
2
5 − 1)

6(1 + 7d2
3)(d2

3 − 1)
;

y73 =
(1− 3d2

3)(1 + 4d2
3 − 21d4

5)
162(d2

3 − 1)(d2
5 − d2

3)(3− 7d2
5 + 7d2

3(5d2
5 − 1))

;

y75 =
(3d2

3 − 1)(7d2
3 + 1)(3d2

5 − 1)
162(d2

5 − 1)(d2
3 − d2

5)(3− 7d2
5 + 7d2

3(5d2
5 − 1))

;

z31 =
d3(d2

3 − 1)
24

; z51 =
d5(d2

5 − 1)
24

− d3z53; z71 =−
√
3

108
− (d3z73 + d5z75);
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and (if z75 is a free parameter)

z73 =
3d2

3 − 1

9
√
3(3− 7d2

5 − 7d2
3 + 35d2

3d2
5)

(
3d2

5 − 1
3d3(d2

3 − 1)
− 4(1 + 7d2

3)d5z53
(d2

3 − d2
5)(d2

5 − 1)

)

+
(d5 − d3

5)z75
d3
3 − d3

;

or (if z53 is a free parameter)

z75 =
3d2

3 − 1

9
√
3(3− 7d2

5 − 7d2
3 + 35d2

3d2
5)

(
3d2

5 − 1
3d5(d2

5 − 1)
+

4(d2
3 − 1)

(
1 + 7d2

5

)
d3z53

(d2
5 − d2

3)(d2
5 − 1)2

)

+
(d3 − d3

3)z73
d3
5 − d5

:

We can however use the free parameters to reduce the number of stages: choosing either (a) d3 =
0 = z53 = z73, or (b) d5 = 0 = z53 = z75 results in a scheme where two rows coincide, such that the
corresponding columns can be added together. We thus 4nd two 1-parameter families of 7-stage
order 8 MIRKN methods. Below, we present the method for which d3 = 0, i.e., c3 = 1

2 .

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0
1
2

1
2 − 1

8 0 0 0 0 0 0 0
1−d5
2

1−d5
2

d2
5−1
8 x51 x52

d2
5
6 (1− d2

5) 0 0 0 0
1+d5
2

1+d5
2

d2
5−1
8 x52 x51

d2
5
6 (1− d2

5) 0 0 0 0
3−√

3
6

3−√
3

6 − 1
12 x71 x72

1−21d4
5

162d2
5(7d

2
5−3) x74 x75 0 0

3+
√
3

6
3+

√
3

6 − 1
12 x72 x71

1−21d4
5

162d2
5(7d

2
5−3) x75 x74 0 0

7d2
5−6

105(d2
5−1) 0 2(7d2

5+1)
105d2

5

Kb4 Kb5 Kb6 Kb7
7d2

5−6
105(d2

5−1)
7d2

5−6
105(d2

5−1)
4(7d2

5+1)
105d2

5
b4 b4 b6 b6

(5.5)

x51 =
d5(1 + 4d5)(d2

5 − 1)
48

; x52 =
d5(1− 4d5)(1− d2

5)
48

;

x71 =
4− 5

√
3 + 6(3

√
3− 7)d2

5 − 21(
√
3− 2)d4

5

648(d2
5 − 1)(7d2

5 − 3)
;

x72 =
4 + 5

√
3− 6(3

√
3 + 7)d2

5 + 21(
√
3 + 2)d4

5

648(d2
5 − 1)(7d2

5 − 3)
;

x74 =
(2
√
3d5 − 1)(3d2

5 − 1)
324d2

5(d2
5 − 1)(7d2

5 − 3)
; x75 =

(2
√
3d5 + 1)(1− 3d2

5)
324d2

5(d2
5 − 1)(7d2

5 − 3)

Kb4 =
1

105(1− d5)d2
5(3d2

5 − 1)
; Kb5 =

1
105(1 + d5)d2

5(3d2
5 − 1)

;
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Kb6 =
3(3 +

√
3)(7d2

5 − 3)
140(3d2

5 − 1)
; Kb7 =

3(3−√
3)(7d2

5 − 3)
140(3d2

5 − 1)
;

b4 =
2

105d2
5(1− d2

5)(3d2
5 − 1)

; b6 =
9(7d2

5 − 3)
70(3d2

5 − 1)
:

5.3. Linear stability of the DC scheme

The linear stability matrices D and N from (4.3) of the two-stage method (5.1) are given by

D1 =



1 +

H 2

6
−H 2

24
H 2

2
1− H 2

12


 ; N1 =



1− H 2

3
1− H 2

24

−H 2

2
1− H 2

12


 :

For the 8-stage family of order 8 methods we have the following result:

D2 =



1 +

H 2

6
− H 4

720
− H 6

30240
− a8H 8 −H 2

24
− H 4

1440
− H 6

60480
H 2

2
1− H 2

12
− H 4

720
− H 6

30240


 ;

N2 =



1− H 2

3
− H 4

720
− H 6

30240
− a8H 8 1− H 2

24
− H 4

1440
− H 6

60480

−H 2

2
1− H 2

12
− H 4

720
− H 6

30240


 ;

where a8 = 1
2b7d7z75z53z31.

One 4nds that the matrices R and S in (4.4) commute if and only if a8 = 0. In that case they are
given by

R=




144− 60H 2 + H 4

144 + 12H 2 + H 4

12(12− H 2)
144 + 12H 2 + H 4

12H 2(H 2 − 12)
144 + 12H 2 + H 4

144− 60H 2 + H 4

144 + 12H 2 + H 4


 ;

S =




2H 6(−504 + 30H 2 + H 4)
36(144 + 12H 2 + H 4)2

H 4(6046− 2376H 2 − 18H 4 + H 6)
210(144 + 12H 2 + H 4)2

−H 6(6046− 2376H 2 − 18H 4 + H 6)
210(144 + 12H 2 + H 4)2

2H 6(−504 + 30H 2 + H 4)
35(144 + 12H 2 + H 4)2


 : (5.6)

The matrix S is however unbounded for H → ∞, such that for problems where H 2 becomes large
severe errors may be expected.

6. A high-order convergent DC scheme based on Lobatto IIIA methods

In this section we brieMy discuss a DC scheme based on the parameterized Lobatto IIIA methods
of orders 4 and 8.
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6.1. The fourth-order method

0 0 0 0 0 0

1 1 0 0 0 0
1
2

1
2 − 1

8 0 0 0

1
6

1
3 0

1
6

2
3

1
6

: (6.1)

6.2. The eighth-order method

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0
7−√

21
14

7−√
21

14 − 1
14

1
392

1
392 − 5

504 − 4
441

1
72

1
2

1
2 − 1

8
1

128
1
128

7
1152 − 1

36
7

1152

7+
√
21

14
7+

√
21

14 − 1
14

1
392

1
392

1
72 − 4

441 − 5
504

1
20 0 49+7

√
21

360
8
45

49−7
√
21

360
1
20

1
20

49
180

16
45

49
180

(6.2)

6.3. Linear stability of the DC scheme

The stability matrix R is again given by (5.6) and S is given by

S =



−504

5
H 6(−12 + H 2)

(144 + 12H 2 + H 4)2(H 2 − 42)
−42

5
H 4(144− 60H 2 + H 4)

(144 + 12H 2 + H 4)2(H 2 − 42)
42
5

H 6(144− 60H 2 + H 4)
(144 + 12H 2 + H 4)2(H 2 − 42)

−504
5

H 6(−12 + H 2)
(144 + 12H 2 + H 4)2(H 2 − 42)


 :

Both R and S (which again commute) are bounded, thus we have constructed a stable DC scheme.

7. Numerical examples

We apply the high-order convergent DC schemes with 4xed step size to the problem [12]
y′′ = +2 y; y(0) = 1; y(1) = 0; x ∈ [0; 1]; (7.1)

whose solution is given by y(x)= (exp(−+ x)− exp(+ (x− 2)))=(1− exp(−2 +)). For large values of
+, (7.1) is a singular perturbation problem and its solution has a boundary layer of width O(+−1) at
x = 0.
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Fig. 1. log10 abs:errormax vs. −log10 h after one stage (1) or both stages (2) of the MIRKN high-order convergent order
8 DC scheme when applied to (7.1).

First we consider the MIRKN based DC scheme. The numerical solution clearly shows the increase
of the algebraic order by four as can be seen in Fig. 1. Here the maximum of the absolute value of
the absolute error over the integration interval is plotted as a function of the number of grid points
in the interval [0; 1] in a (log10, log10) scale for several values of + and for the two stages in our
DC scheme marked respectively as (1) and (2). The solid lines indicate respectively orders 4 and 8.
The instability of the DC scheme in case of large values of |+ h| can be noticed in the case where
+=100 or 1000. Since R (which is the stability matrix of the P-stable Gauss method of order 4) is
bounded, bounded errors are generated in the 4rst stage of the DC scheme, but the unboundedness
of S causes unbounded errors in the second stage of the overall method.

Fig. 2 displays similar results for the DC scheme based on the Lobatto IIIA methods of orders 4
and 8, except for += 1000 where bounded errors are obtained due to the stability of the scheme.

One may think that, in the case of the MIRKN DC scheme, the unbounded behaviour for large
values of H is related to the explicit computation of the deferred correction. To prove that this is
not the case, we also applied three-other DC schemes, L24, L26 and L28, on (7.1) with + = 1000.
For each scheme the basic method is the second-order Lobatto IIIA method and the method 	∗

is the fourth (respectively sixth and eighth) order Lobatto IIIA method. For all four methods the
parameterization (3.3) with )= 1

2 was used. The resulting schemes (which all have order four) have
the following properties:

• L24 : explicit deferred corrections with a nonstable matrix S,
• L26 : implicit deferred corrections with a stable matrix S,
• L28 : implicit deferred corrections with a non-stable matrix S.
From Fig. 3 it is clear that the unstable behaviour is related to the unboundedness of S, not to

the explicitness of the deferred corrections.
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Fig. 2. log10 abs:errormax vs. −log10 h after one stage (1) or both stages (2) of the high-order convergent order 8 DC
scheme of Lobatto IIIA methods when applied to (7.1).

Fig. 3. log10 abs:errormax vs. −log10 h after one stage with 	 the Lobatto IIIA method of order 2 (1) or both stages of the
order 8 DC scheme with 	∗ the Lobatto IIIA method of orders (2) 4, (3) 6, (4) 8 when applied to (7.1) with += 1000.

Finally, we brieMy discuss a simple variable step size implementation. Table 1 contains the max.
norm of the absolute errors of the numerical solution obtained by a variable step implementation of
the DC scheme based on the constructed fourth and eighth order MIRKN methods. These results are
compared with those of TWPBVP [6,7] which inspired us for the step size strategy. We omit the
details because it was not our intention to build a competitive code. The total number of gridpoints
and the individual size of the used grids are added between brackets.
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Table 1
Abs. errors for the variable step size implementation with DC MIRKN48 and TWPBVP

+ = 10 + = 100 + = 1000

DC MIRKN48 6:1e − 9 3:4e − 10 4:6e − 11
(30 = 5 + 25) (80 = 22 + 58) (274 = 82 + 192)

TWPBVP 2:1e − 9 9:8e − 10 1:8e − 10
(37 = 7 + 12 + 18) (81 = 7 + 13 + 25 + 36) (358 = 7 + 13 + 25 + 49 + 97 + 167)

8. Conclusion

In this paper, we have discussed the possibility of constructing high-order convergent (iterated) DC
schemes based on two (or more) PIRKN methods. We found that the conditions to obtain high-order
convergence can be expressed in terms of the parameters v and w of these PIRKN methods. If the
parameters are chosen in an appropriate way, all conditions are identically ful4lled.

We focussed our attention mainly on the construction of an order 8 DC scheme which consists
of two MIRKN methods of orders 4 and 8 since these MIRKN methods o5er some computational
advantages. A brief investigation of the linear stability properties of this scheme shows however that
this particular scheme is not very well suited to solve problems with rapidly varying solutions. For
such problems, the stable scheme based on Lobatto IIIA methods is more suited.
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