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Abstract—Event detection plays an important role in non-
intrusive load monitoring to accurately detect the switching of
appliances in a residential environment. Improving the detection
ratios of those methods while keeping the computational cost
under control is important. This paper presents a new event
detection mechanism that works in the frequency domain and
uses Cepstrum smoothing to eliminate noise. We explore the
potential of our method by comparing with the χ2 GOF method
on the BLUED dataset. The results indicate that our method is
competitive with the state-of-the-art having as advantage that the
same feature can also be used for appliance detection.

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) concerns the
analysis of the aggregate power consumption of electric loads
in order to recognize the existence and the consumption
profile of each individual appliance. NILM makes it possible
to inform the consumers how much energy each appliance
consumes thereby empowering them to reduce their energy
consumption in an informed way.

In 1992, Hart was the first one to describe the steps of
NILM [1]: 1) measuring the aggregated power consumption
with a sensor attached to the main power cable, 2) detecting
state-transitions of appliances (events) from the captured data,
3) clustering similar transitions using a well-chosen feature
vector, 4) matching the on-transitions with the off-transitions,
5) recognizing and monitoring each appliance. These steps
can be handled event-based or non-event-based [2]. The
former starts with the state transition (or event) detection
and the features around the detected transitions are used
for clustering and classification. The latter does not rely on
edge detection but uses every sample of the power trace for
inferencing, which is typically more resource demanding.

In this paper an event-based method is presented that uses
smoothed frequency components to detect an event. The
remainder of this paper is structured as follows: in Section
II a brief overview of related work is introduced, in Section
III the proposed method is described and in Section IV, its
performance is benchmarked and discussed.

II. STATE-OF-THE-ART

Three efficient algorithms that are commonly used for
real-time event detection in NILM are: the Generalized

Likelihood Ratio (GLR) test [3], the chi-squared goodness-
of-fit (χ2 GOF) [4] and the CUmulative SUM (CUSUM)
filtering [5]. To decide whether a certain event is present
or not in a defined timeframe, GLR calculates a decision
statistic from the natural log of a ratio of probability density
functions before and after a potential change in mean. The
χ2 GOF test detects events by assuming that two consecutive
timeframes share a common distribution. A χ2 statistic is
applied and an event is assumed if the null hypothesis is
rejected. Finally, CUSUM is a method to determine changes
in the quality number (e.g. the mean or the difference
between the predicted and real value) by testing it against a
criterion (a stop rule) describing when an event occurs. All
three methods are statistical tests, work in the time domain
and divide the signal into windows. In itself, these methods
are not able to detect slow changes in the signal. However,
this is possible if an extra analysis is added [5]. This step
will keep track of the beginning and ending of transient
behavior respectively defined as the moment when the stop
rule of the CUSUM occurs in steady state and the moment
when the stop rule of the CUSUM occurs in the transient state.

In addition to these statistical methods, more computational
costly machine learning algorithms such as kernel clustering
[6], Hidden Markov Models [7], Support Vector Machines
[8], and Bayesian methods [9] have been proposed to address
event detection. These methods contain parameters and require
a training step to tune these in order to minimize misdetection
rates. This training can be done in a supervised way requiring
enough labelled data such that the algorithm calculates
optimal parameters to predict these labels (representing the
events) as accurately as possible. Training can also be done
in an unsupervised manner requiring a cost function such that
the algorithm with the optimal parameters has the lowest cost
[6].

Cepstrum analysis was first introduced in 1963 where it was
originally used to analyse the echoes within seismic signals
produced from earthquakes [10]. Since then, it has proven
to be a potent technique in several domains. One application
is passive sonar which involves listening to the environment
without sending signals in order to detect objects [11]. One
specific example is the detection of fish under water. One
problem is that this radiated signal is corrupted with multipath
effects and interference noise. Applying Cepstrum analysis on
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Fig. 1. A schematic overview of the transformation from a time signal to
spectral smoothed dB-scaled frequency components.

the signal will alleviate this problem. Cepstrum analysis finds
another application in speech recognition [12] where Cepstrum
coefficients have been successfully applied to increase the
robustness of various algorithms. Very recently it is also shown
that Cepstrum coefficients can be used in a NILM setting as
discriminative features in appliance recognition [13]. They are
particularly interesting when multiple appliances are turned
on or off at the same moment. In our work we explore and
demonstrate the use of Cepstrum analysis for event detection.

III. METHOD

Events are detected in the frequency domain where smooth-
ing occurs in the quefrency domain, rather than the time
domain. The different steps are outlined in Figure 1. Consider
a window x of length n from a power signal p,

x = {pi, pi+1, ..., pi+n} (1)

then the goal is to detect if there is an event or not. First,
this window will be converted from the time to the frequency
domain, by using the Fourier transform.

X[k] =

n∑
j=1

x[j]e−2πikj/n , 0 ≤ k < n (2)

By transforming this information from the frequency domain
into the quefrency domain, Cepstrum components can be
computed. These can be computed by applying the inverse
Fourier transform to the logarithm of |X|.

c[n] =
1

N

N−1∑
k=0

log10( |X[k]| )e2πink/N , 0 ≤ n < N (3)

These Cepstrum components are smoothed by means of a
filter w, after which they are transformed back to frequency
components by applying the Fourier transformation.

X̂[k] =

n∑
j=1

w[j] c[j]e−2πikj/n , 0 ≤ k < n (4)

The filter w is defined as one minus the Hann window, see
Figure 3.

w[j] = 1− 0.5 (1− cos(2πj/n)) , 0 ≤ j ≤ n (5)

As a result, only the very low and high frequency components
remain. In the time-power domain this corresponds
respectively to a steady-state signal and step change.

Fig. 3. The response of the filter w.

Because the relative difference in values of the components
is more informative than the absolute difference, the frequency
components are converted to a dB scale.

X̂dB [k] = 20 log10(X̂[k]) (6)

These components are an informative indicator if there are
any events present in the time window or not. This can be
seen in Figure 2. It is clear that if an event is present, all
the Cepstrum smoothed dB scaled frequency components have
higher values (see Figure 4b) than when there is no event
present (see Figure 4d). To detect if an event is present, it is
checked if all frequency components are larger than a chosen
threshold τ .

min(X̂dB [k]) > τ (7)

If yes, then this is labelled as an event. This threshold should
however be trained, to obtain good detection ratios. How this
is done, will be mentioned in next section.

The signal is processed by using overlapping time windows.
If a window is

x1 = {pi+1, pi+2, ..., pi+n} (8)

then the following window which overlaps it with three
quarters, is represented by

x2 = {pi+n/4+1, pi+n/4+2, ..., pi+5n/4} (9)

Note that this will cause a single event to be detected multiple
times in consecutive time intervals. The exact timestamp of
an events is pinpointed as the midpoint of the time interval
covered by these windows. For an example, see Figure 4.

IV. RESULTS

In this section the proposed method is compared with the
χ2 squared method by using the BLUED benchmark dataset
[14]. From this data, the aggregated active power signal of
60Hz from a family residence in the United States for a whole
week is considered. Every state transition of each appliance
is labelled providing the ground truth. This power occurs in
two phases, namely phase A and B. In total, 904 transitions
are captured in phase A and 1578 in B. Each phase has its
own properties, e.g. phase B is more noisy than phase A. For
that reason, phase A and B are trained and tested separately.



(a) Power signal of an event. (b) Smoothed frequency compo-
nents of an event.

(c) Power signal of a non-event. (d) Smoothed frequency compo-
nents of a non-event.

Fig. 2. Examples of windows with size n = 40 of a power trace and the corresponding smoothed frequency components X̂ of an event, respectively 4a and
4b and a non-event, respectively 4c and 4d. In the smoothed frequency components a clear distinction is visible between an event and non-event.

(a) Window {p1, ...., p40} (b) Window {p11, ...., p50} (c) Window {p21, ...., p60} (d) Window {p31, ...., p70}

Fig. 4. Four consecutive windows detecting the same event. Since the event detection is triggered four times in a row, the algorithm concludes that an event
occurred in the center of the time interval covered by these windows.

To obtain the results, we split our data in five equal parts.
One part is used for testing and the other four for training.
On this training set we apply 5-fold cross-validation in
order to avoid overfitting. From this cross-validation, optimal
configuration settings for the methods are obtained and the
evaluation on the test set gives us the final performance.
This initial splitting is done 10 times so that the stability
of our performance is proven. A schematic overview of this
procedure is given in Figure 5. Note that for the division in
parts, we take a file as a whole unit.

For the evaluation of the results, the advice given in [15]
is followed. To assess the detection ratio’s, the F-measure can
be used which is defined as the harmonic mean of precision
and recall.

F = 2 ∗ precision ∗ recall
precision+ recall

(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

where precision is the fraction of detected events that
are real and recall is the fraction of true events that are
detected, TP are the true-positives (correctly predicted
events), FP are the false-positives (predicted events that
were none), FN are the false-negatives (undetected events).
The Formula’s (10)-(12) depend on parameter settings of
the algorithm. When the Cepstrum coefficients are used, the
parameters are the window size n = {20, 40, 60, 80, 100},
the threshold τ = {5, 10, 15, 20, 25, 30, 35, 40}. When the
χ2 method is used, the considered parameters are the
window size n = {20, 40, 60, 80, 100}, the confidence level
α = {0.90, 0.95, 0.975, 0.99, 0.999} and the window size

Fig. 5. A schematic overview of how training is done. The data is split in
five equal parts. One part is used for testing and the other four parts are used
for training. On the training set, 5-fold cross-validation is performed.

m = {10, 30, 50, 70, 90, 110} of the window used by the
median filter as the signal is smoothed in the time domain [4].

The experiments are repeated 10 times and the minimum,
first quantile (Q1), median, third quantile (Q3) and maximum
of the F-measure are reported in Table I. If all these values
are close together, then this means that the algorithm is
stable which is the case for both methods. Looking at the
F-measure, it can be concluded that the Cepstrum analysis
is as good as the χ2 GOF statistic showing ∼ 98% perfect
event detection for phase A and ∼ 80% for phase B.

Table I also describes the running time of the algorithms to
process eight files. This is equal to the amount of files used for
training in one fold. It can be seen that the Cepstrum method
takes more time than the χ2 method.

V. CONCLUSION

In this paper an event detection method is proposed that
works in the frequency domain and uses Cepstrum smoothing



TABLE I
THE SPREAD OF THE F-MEASURE WHEN APPLYING THE χ2 GOF METHOD
AND CEPSTRUM ANALYSIS ON PHASE A AND B OF THE BLUED DATASET
AND THE RUNNING TIME OF THE ALGORITHM TO PROCESS EIGHT DAYS.

Phase A Phase B

χ2 Cepstrum χ2 Cepstrum

Min 86.2% 87.14% 68.89% 74.29%

Q1 98.06% 97.73% 76.5% 77.23%

Med 98.44% 98.01% 81.01% 80.035%

Q3 99.2% 98.4% 83.12% 81.84%

Max 99.74% 98.76% 85.1% 86.22%

Time 127 sec 926 sec 142 sec 1717 sec

for eliminating noise. With a reported F-measure equal to
98.01% for phase A and 80.03% for phase B on the BLUED
dataset, the method is competing with the state-of-the-art.
Although the method is more opaque than the traditional
χ2 method, a big advantage of this method is that the
frequency components can be used for both event detection
and appliance recognition. More details will be reported in a
forthcoming paper.
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