
Design of a Hierarchical Software-Defined
Storage System for Data-Intensive Multi-Tenant

Cloud Applications
Pieter-Jan Maenhaut∗†, Hendrik Moens†, Bruno Volckaert†, Veerle Ongenae∗ and Filip De Turck†
∗Ghent University, Faculty of Engineering and Architecture, Dept. of Industrial Technology and Construction

Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
†iMinds – INTEC, Ghent University, Dept. of Information Technology

Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium
Email: pieterjan.maenhaut@intec.ugent.be

Abstract—Software-Defined Storage (SDS) is an evolving con-
cept in which the management and provisioning of data storage
is decoupled from the physical storage hardware. Data-intensive
multi-tenant SaaS applications running on the public cloud could
benefit from the concepts introduced by SDS by managing the
allocation of tenant data from the tenant’s perspective, taking
custom tenant policies and preferences into account.

In this paper, we propose the design of a scalable multi-tenant
SDS system. In our approach, tenants are hierarchically clustered
based on multiple scenario-specific characteristics. The storage
elasticity component of the SDS system is responsible for the
dynamic (re-)allocation of tenant data over the available storage
resources. It invokes the Hierarchical Bin Packing algorithm
introduced in this paper to determine an optimized distribution
of tenant data based on the hierarchical tenant tree.

We evaluate our system by means of two case studies based on
real-life data sets. Experiments confirm that the Hierarchical Bin
Packing algorithm achieves a good performance, with execution
times below 100 ms to calculate the allocation for 1000 tenants
in a worst-case scenario. Furthermore, our system achieves an
average utilization of the storage resources close to the configured
allocation factor, with reallocation of tenant data balanced over
time.

I. INTRODUCTION

Software-Defined Storage (SDS) [1] is an evolving concept
for the management of data storage from the software’s
perspective, independent of the underlying hardware. A SDS
system manages the policy-based provisioning of data storage,
and virtualization is often used to provision the required
resources, similar as with cloud computing.

With public cloud computing, infrastructure providers usu-
ally apply a cloud pricing model in which the customer is
charged based on the actual resource usage (pay-as-you-go
pricing model) [2]. Multi-tenancy [3] enables the sharing
of resources by multiple client organizations, referred to as
tenants. As a result, adding multi-tenancy to a cloud applica-
tion increases the utilization of available hardware resources,
resulting in lower overall application costs. Although a single
instance is shared between multiple tenants, the instance needs
to behave like a private instance towards every tenant by
guaranteeing both data separation and performance isolation.
A scalable multi-tenant application should also be able to react

to sudden changes in demand, by provisioning the optimal
amount of resources in order to handle the current load, and
distributing the different tenants over the available instances.

For data-intensive multi-tenant applications, every tenant
will have a certain amount of persistent data which can
be distributed over multiple storage volumes. As a result, a
scalable SDS system is required whose task is to provision
the optimal amount of storage resources, and to distribute
the tenant data among the different available volumes, but
guaranteeing a clear isolation of tenant data.

In this paper, we propose the design of a multi-tenant
software-defined storage system. The system invokes the
Hierarchical Bin Packing (HBP) algorithm to determine an
optimized allocation of tenant data over multiple logical disks.
The remainder of this paper is structured as follows. In the
next section we will discuss related work. Afterwards, in
Section III we will explain the need for hierarchical clustering
of the tenants. In Section IV we present the architecture of our
system and introduce the Hierarchical Bin Packing Algorithm
in Section V. In Section VI, we will present some of our
evaluation results together with a discussion in Section VII and
in Section VIII we state our conclusions and discuss avenues
for future research.

II. RELATED WORK

In previous work [4], [5], we worked on the design of a
data management framework which can be used to extend
existing multi-tenant cloud applications in order to achieve
high scalability of the database layer. This database layer
consists of multiple relational databases, and the framework
manages the distribution and retrieval of tenant data over the
available instances, but guaranteeing the correct functioning of
the data queries. In this paper, we focus on the design of a SDS
system for managing the allocation of blob storage instead of
relational data. This leads to a very different approach for the
allocation of tenant data, with a strong focus on data isolation,
and the design of a new algorithm.

Ceph [6] is a distributed object store and file system
designed to provide excellent performance, reliability and

978-3-901882-77-7 c© 2015 IFIP

scalability. Ceph stores client data as objects within storage
pools, and uses the CRUSH [7] algorithm to allocate the
objects over placement groups. The CRUSH algorithm also
uses a hierarchical structure, called the hierarchical cluster
map, but this hierarchical structure is used to manage the
storage devices, which are the leaves of the tree. The main
difference with our solution is that CRUSH will distribute data
using a pseudo-random function. Each object is mapped to a
list of devices on which to store object replica, approximating
a uniform probability distribution. We however want to dis-
tribute data based on tenant-specific parameters, where every
tenant is mapped to a single storage device (if possible). Our
solution will not necessarily lead to a uniform distribution of
data, but it will try to maximise isolation of tenant data.

In [8] the performance of a data cluster based on the Ceph
platform with geographically separated nodes is evaluated. The
authors focus on high availability, by allocating copies of the
data over multiple distributed storage nodes, and measuring
the required bandwidth. We however focus on the distribution
of tenant data based on selected characteristics, and less on
the high availability of data. The solution proposed in this
paper could however be used to extend our system to support
distributed high-availability.

III. HIERARCHICAL CLUSTERING OF TENANTS

In the presented approach, the different tenants are hier-
archically organized using a tree structure. There are several
reasons to do so. First of all, multi-tenant applications are
often used by multiple organizations, the tenants. As large
organizations tend to consist of multiple independent divisions,
this already introduces the need for subtenants or even sub-
subtenants. But there might also be other reasons to structure
tenants hierarchically. For example when the tenants using the
application are geographically distributed, it might be a good
idea to cluster tenants based on their location, with the location
as a virtual parent node and the tenants as child nodes. Tenants
could also be clustered based on other characteristics, such as
the selected Service-Level Agreement (SLA), with different
nodes for the different types of SLAs. In general, tenants
can be clustered based on multiple characteristics, with the
most significant characteristics at the highest level of the tree
structure. As a result the hierarchical tree structure, which
we refer to as the tenant tree, will have multiple levels, as
illustrated in Figure 1, and more levels in the tenant tree will
result in better results for the HBP algorithm.

IV. ARCHITECTURE OVERVIEW

Figure 2 illustrates the concept of a scalable system for data-
intensive multi-tenant cloud applications. For data storage, a
Logical Unit Number (LUN) is often used to identify a logical
unit that can be addressed by the SCSI protocol or Storage
Area Network (SAN) protocols [9]. Although the term LUN
refers to the number of the logical disk, in this paper we will
use the term to refer to the logical disk itself, as is often
done in literature. When an authenticated tenant user wants to
access the multi-tenant application, he first connects to the load

Silver
SLA

Europe

North
America

...

Belgium

France

...

Gold
SLA

.

...

Company
Y

Company

X

...

Office 2

Office 1

...

SLA based
clustering

Geographical
clustering

Tenant based
clustering

Fig. 1. Example tenant tree where tenants are clustered based on multiple
characteristics, with more significant characteristics such as the selected SLA
at a higher level in the tree structure.

Tenant
User

Load
Balancer

Application Servers

VM VM VM

VM VM VM

Computational
Elasticity

Storage Pool

LUN LUN LUN

LUN LUN LUN

Storage
Elasticity

1 2 4

3

5

VM

LUN

LUN

VM

VM LUN

Selected Tenant
VM / LUN

Provisioned
VM / LUN

Unprovisioned
 VM / LUN

Fig. 2. General overview of a scalable system for data-intensive multi-tenant
cloud applications.

balancer (1) in order to select one of the available application
server instances (2). In order to retrieve the application data,
the application server connects to the storage pool where the
tenant data is stored (3).

To achieve high scalability of the computational resources,
the computational elasticity component monitors the current
load on the provisioned application server instances (4). As
the load increases, additional instances will be provisioned.
To achieve high scalability of the storage resources, the
storage elasticity component monitors the current usage of the
provisioned LUNs (5). When a single LUN reaches a certain
threshold, the reallocation factor, tenant data is reallocated
and an additional LUN can be provisioned. Similarly, if the
current load on either the application servers or the current
usage on the provisioned LUNs decreases significantly, one or
more application servers or LUNs should be de-provisioned,
requiring the reallocation of some of the tenants.

The application servers consist of multiple Virtual Machine
(VM) instances, and on every instance the multi-tenant appli-
cation is running on top of a Multi-Tenant Datastore Selection
(MTDS) module, responsible for communicating with the
storage pool. This module has access to the current allocation
scheme in order to select the correct LUN, and this scheme is
updated by the storage elasticity component whenever tenant

data is reallocated. The main task of the MTDS module is to
select the required LUN, and to verify if the current tenant
user has the required permissions to read and/or modify the
selected tenant data.

The storage pool consists of a set of provisioned LUNs. The
number of LUNs can change over time, and every LUN can
hold data belonging to multiple (sub)tenants. Data belonging to
a single (sub)tenant is however is always allocated to a single
LUN, unless it is too big in size. The LUN can be replicated
to achieve high availability. The set of LUNs is assumed to be
homogeneous, meaning that they have identical characteristics,
such as the size and format. An extension for a heterogeneous
storage pool is possible but is out of scope for this paper.

The storage elasticity component handles the dynamic be-
haviour of the storage pool. It invokes the HBP algorithm
to find a feasible allocation over the available LUNs, and
(re)allocates the tenant data.

V. HIERARCHICAL BIN PACKING

The storage elasticity component invokes the HBP algo-
rithm to find a feasible allocation of tenant data over multiple
bins (the LUNs). Three configurable parameters are used by
this component:

• SIZE, the maximum size of a single bin
• AF , the allocation factor (0 < AF < 1)
• RF , the reallocation factor (RF > AF, 0 < RF < 1)
When the algorithm is invoked, it will allocate the tenant

data over multiple bins with the following constraint:

bin.currentUsage <= AF × SIZE

In the above equation, bin.currentUsage denotes the cur-
rent usage of a single LUN. As the amount of tenant data
grows over time, reallocation of tenant data might be required.
More specific, the algorithm will be reinvoked and tenant data
will be reallocated whenever one of the LUNs violates the
following constraint:

bin.currentUsage <= RF × SIZE

The algorithm takes a set of tenants, together with their
current size as input, and returns a mapping from tenants to
multiple bins. The tenants are hierarchically organized using
a tree structure, the tenant tree, in which each node represents
a (sub)tenant. A single node is represented by the following
structure:

class Node{
String name; // tenant identifier
Node[] children; // pointer to child nodes
double nodeSize; // size of current node
double treeSize; // size of (sub)tree

// with current node as root
}

The pseudo-code of the HBP algorithm is presented in
Algorithm 1. The algorithm takes two input parameters, a
pointer to the root node and an empty set of bins (representing

TABLE I
SUMMARY OF USED SYMBOLS

Symbol Description

SIZE Maximum size of a single bin
AF Allocation factor
RF Reallocation factor
root Pointer to root of tenant (sub)tree
n.nodeSize Size of node n (without children)
n.treeSize Total size of (sub)tree with n as root
b.currentUsage Current usage of bin b

Algorithm 1 The Hierarchical Bin Packing (HBP) algorithm
Input: Pointer to root node (root), set of LUNs (bins)
Output: Set of LUNs (bins)

if root.treeSize ≤ AF × SIZE then
Allocate whole (sub)tree with size root.treeSize to a
single bin using the First-Fit Bin Packing algorithm

else
sorted = sort({root.nodeSize} ∪ {n.treeSize for n in
root.children})
for n in sorted do

if n is root then
Allocate root node only with size root.nodeSize to
a single bin using the First-Fit Bin Packing algorithm

else
Invoke algorithm with n as root and bins as input
parameters (recursive call)

end if
end for

end if
return bins

the LUNs), and returns this set with all nodes allocated. The
second input parameter is required for the recursive calls in
the algorithm. For completeness, Table I provides a summary
of the used symbols.

If the whole (sub)tree can be allocated to a single bin, the
algorithm will do so. For allocating a node or (sub)tree, the
First-Fit Bin Packing (FFBP) algorithm is used, meaning that
the amount of data is allocated to the first bin with enough
space left, or to a new bin if no other bins are suitable. Note
however that a (sub)tree will not be split, the whole (sub)tree
will be allocated to a single suitable bin. If the (sub)tree does
not fit a single bin, the algorithm will be invoked recursively.
First, all child subtrees are sorted based on their treeSize,
together with the current root node based on its nodeSize.
Next, for every subtree in this sorted set, the algorithm is
invoked with a pointer to the subtree as root. The root node
itself is allocated using the same FFBP algorithm as mentioned
above. In fact any bin packing algorithm can be used for the
implementation, but we selected the FFBP algorithm as this
approximation algorithm already provides acceptable results
with very low execution times.

The HBP algorithm works fine if all nodes have a
nodeSize ≤ AF × SIZE. In some cases however, there
might exist some bigger nodes which don’t fit a single bin.
As a result, the tenant tree is first ‘fixed’ before invoking the

x2

...

x2

x1

...

X
nodeSize >

AF x SIZE

X n
nodeSize =

(AF x SIZE)

X
nodeSize =

(AF x SIZE)

X
nodeSize =
nodeSize %

(AF x SIZE)

...

Add
n = nodeSize /

(AF x Size)
parent nodes with

nodeSize =
AF x SIZE

Update original
node,

 set nodeSize =
nodeSize %
(AF x SIZE)

x1

(part of) original
tenant tree (part of) fixed tenant tree

Node with
 nodeSize >

AF x SIZE

Fig. 3. Fixing the tenant tree before invoking the HBP algorithm.

algorithm. During this pre-processing step, big nodes are split
into multiple smaller nodes as illustrated in Figure 3.

VI. EVALUATION RESULTS

All experiments were executed on a Linux server with an
Intel Core i5 CPU (1.40 GHz) and 4 GiB of 1600MHz DDR3
memory. The HBP and FFBP algorithms were implemented
in C++. For the implementation of the FFBP algorithm, the
First Fit Decreasing strategy was used, meaning that the
algorithm first sorts the items to be inserted by their sizes
in decreasing order, and then inserts each item into the first
bin with sufficient remaining space.

A. Evaluation of efficiency

In order to evaluate the efficiency of the system, we focused
on 3 different metrics. The first metric is the average LUN
utilization, as a higher value for this metric leads to fewer
LUNs and hence lower operating costs. The second metric
focuses on the reallocations, and we look at both the number
of reallocations as the amount of data to migrate. The last
metric is the average distance between the nodes allocated to
a LUN, as a lower value indicates a better clustering.

For our simulations, we worked with 2 case studies based
on real-life data sets. The first case study is the implementation
of a population register, in which for every inhabitant a
small amount of data is stored. The data set is based on the
yearly population for every town in Flanders over the period
2005 to 2012. These numbers are available from the official
website of Flanders [10]. The different towns (tenants) were
geographically clustered based on the capital city, region and
province to create the hierarchical tenant tree. Including the
internal nodes, the whole tenant tree for this scenario consists
of 946 nodes. This data set is relevant because it is a good
example of a large slow-growing data set.

We experimented with different values for the configurable
parameters SIZE, AF and RF , but most experiments lead
to similar results. Note that for this scenario, the parameter
SIZE is used to denote the maximum number of inhabitants
that can be stored on a single LUN. Figure 4 illustrates the
average LUN utilization over the different years for both
the HBP algorithm and the FFBP algorithm for one of our
simulations. No reallocations were required over the years, as

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 2005 2006 2007 2008 2009 2010 2011 2012

A
v
e
r
a
g
e

L
u
n

U
s
a
g
e

Year

AF
HBP

FFBP

Fig. 4. Average LUN utilization for the slow-growing data set over the
different years with SIZE = 106, AF = 0.7 and RF = 0.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1998 2000 2002 2004 2006 2008 2010 2012 2014

A
v
e
r
a
g
e

L
u
n

U
s
a
g
e

Year

AF
HBP

FFBP

Fig. 5. Average LUN utilization for the fast-growing data set over the different
years with SIZE = 108, AF = 0.7 and RF = 0.9.

expected for a slow-growing data set. Furthermore, the FFBP
algorithm initially achieves a slightly higher LUN utilization
than the HBP algorithm, as the FFBP allocated the data over
15 LUNs whereas the HBP algorithm required 16 LUNs. The
additional cost for the latter however is strongly compensated
by the fact that the data on the LUNs is geographically
clustered, which is not at all the case for the FFBP algorithm.

Our second case study is similar as the first one, but the
data set is based on the number of fixed broadband internet
subscribers per country worldwide over the last 17 years,
which is a large fast-growing data set. This data is available
from the World Bank Open Data [11]. The different countries
(tenants) are hierarchically clustered based on their world
region, resulting in a tenant tree with a total of 222 nodes.
We did similar experiments as with the previous scenario, but
for this scenario we paid extra attention to the migration size
(the percentage of data that needs to be migrated between
LUNs between 2 consecutive allocations), as we expect a lot
of reallocations due to the fast-growing behaviour.

Figure 5 and Figure 6 illustrate the average LUN utilization
and the migration size for one of our experiments, whereas
Table II provides a detailed overview of the results. As can be
seen from these results, the first 5 years the amount of data

TABLE II
SIMULATION RESULTS FOR THE FAST-GROWING DATA SET OVER THE DIFFERENT YEARS WITH SIZE = 108 , AF = 0.7 AND RF = 0.9.

HBP FFBP

Year Avg. Utilization (%) # LUNs Migr. Size (%) Avg. Utilization (%) # LUNs Migr. Size (%) Total Size

1999 1.013788 1 - 1.013788 1 - 1013788
2000 4.083473 1 0 4.083473 1 0 4083473
2001 15.661822 1 0 15.661822 1 0 15661822
2002 35.936250 1 0 35.936250 1 0 35936250
2003 63.967070 1 0 63.967070 1 0 63967070
2004 50.343976 2 32.0369 50.343976 2 30.4783 100687952
2005 51.455433 3 28.0221 51.455433 3 38.1982 154366301
2006 53.902831 4 10.1821 53.902831 4 54.5252 215611325
2007 55.996213 5 35.9997 69.995267 4 44.1721 279981069
2008 68.334749 5 31.0423 68.334749 5 31.425 341673747
2009 67.650500 6 29.8826 81.180600 5 0 405903003
2010 66.163573 7 27.6989 66.163573 7 38.9445 463145017
2011 65.160919 8 34.1534 65.160919 8 36.0545 521287355
2012 65.088807 9 24.9946 65.088807 9 22.7164 585799265
2013 63.551126 10 31.3191 63.551126 10 31.0177 635511265
2014 67.862235 10 0 67.862235 10 0 678622358

 0

 0.2

 0.4

 0.6

 0.8

 1

 1998 2000 2002 2004 2006 2008 2010 2012 2014

M
i
g
r
a
t
i
o
n

S
i
z
e

Year

HBP
FFBP

Fig. 6. Percentage of data to reallocate for the fast-growing data set over the
different years with SIZE = 108, AF = 0.7 and RF = 0.9.

starts growing, resulting in no reallocations as all data can still
be allocated to a single LUN, but from 2004 on there is an
enormous grow in size, leading to reallocations almost every
year. This graph clearly shows the main difference between
the two algorithms. The FFBP algorithm tends to reach a
higher average LUN utilization, but this results in very large
migration sizes (almost 55% of data is reallocated between
2005 and 2006). The HBP algorithm reaches a slightly lower
average LUN utilization, because of the forced clustering, but
this results in more balanced migration sizes and an almost
constant average utilization which is still very close to the
selected AF .

We also measured the average distances over the different
LUNs. To achieve this, for every LUN we measured the
distance between all nodes allocated to this bin. The distance
between two nodes is defined as the number of edges between
the two nodes in the tenant tree, following the shortest path.
Figure 7 gives an overview of the measured average distances
over the different years. During the first years, both algorithms
have the same average distance, which is expected as both

 0

 1

 2

 3

 4

 5

 1998 2000 2002 2004 2006 2008 2010 2012 2014

A
v
e
r
a
g
e

D
i
s
t
a
n
c
e

Year

HBP
FFBP

Fig. 7. Average distance over the different bins for the fast-growing data set
over the different years with SIZE = 108, AF = 0.7 and RF = 0.9.

algorithms allocate all tenants to a single LUN. However, as
soon as the amount of data becomes too large to allocate
to a single LUN, the HBP algorithm achieves a much lower
distance than the FFBP algorithm, indicating that the algorithm
is able to cluster related tenants.

B. Worst-case performance
In order to evaluate the performance of the HBP algorithm,

we focused on the worst-case scenario. The worst-case sce-
nario occurs when the tenant tree is a linear graph, meaning
that there is only 1 leaf node connected to the root node (with
possible multiple levels in between). We refer to this scenario
as vertical growth. Especially when every node in the tree
is large, meaning that no nodes can be clustered together on
a single LUN, the algorithm will do the maximum number
of recursive calls. In theory, we expect that the algorithm
will still achieve the same complexity as the FFBP algorithm,
O(n log n), which will be confirmed by our experiments.

To simulate this behaviour, we evaluated a scenario in which
we started with a single node in the tenant tree, which is both
root and leaf, with a maximum nodeSize = AF × SIZE.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
t
i
o
n

t
i
m
e

(
m
s
)

Number of tenants

HBP - vertical growth
HBP - horizontal growth

FFBP

Fig. 8. Execution times of the HBP algorithm versus the FFBP algorithm for
both worst-case scenarios.

Every iteration, a new child node n was added to the leaf node
of the tree with n.nodeSize = n.parent.nodeSize − 10−6.
This results after i iterations in a tenant tree with 1 leaf node,
i− 1 internal nodes in between the leaf node and the original
root node, and i + 1 levels in the tree. Every iteration was
repeated 100 times in order to measure the average execution
time.

We also executed this experiment with a second worst-
case scenario. In this scenario, there is a single root with
an increasing number of child nodes (tenants) over the dif-
ferent iterations, and we will refer to this scenario as hor-
izontal growth. Every child node was assigned a maximum
nodeSize = AF × SIZE to prevent clustering.

Figure 8 illustrates the average execution times for the
HBP algorithm and the FFBP algorithm over the different
iterations for both scenarios. As can be seen from this figure,
for the vertical growth the HBP algorithm has slightly higher
execution times than the FFBP algorithm, due to the overhead
of the recursive calls and the growing call stack. However,
as it still takes less than 100 ms to calculate the allocation
for 1000 tenants, this is not really an issue. For the second
scenario, the horizontal growth, the overhead is much smaller,
because there is only 1 recursive call active at any time (for
the current subtenant), and the call stack is not growing. Note
that for both scenarios the FFBP algorithm achieves similar
execution times as the hierarchical structure has no influence
on the performance of this algorithm.

VII. DISCUSSION

In the previous section, we evaluated our system by
analysing both the efficiency and the performance of the HBP
algorithm, which is the core of our system. Compared to
the FFBP algorithm, the HBP algorithm achieves a slightly
lower LUN utilization, but the average is still close to the
selected allocation factor AF . The main benefits from the
algorithm are the forced clustering of tenants, resulting in
lower LUN distances, and faster provisioning of additional
storage resources, resulting in a more balanced reallocation of
tenant data over time. Furthermore, the algorithm has very low
execution times even for a worst-case scenario.

In Figure 2, any load balancer mechanism could be used for
implementing the load balancer for the application servers. We
however prefer to use tenant-based load balancing, in which
users belonging to the same tenant are always routed to the
same application server instance, and the HBP algorithm could
even be used for implementing the load balancer. By doing so,
multiple tenants can share the same instance if the tenants are
small. There are several reasons for this approach. First of all,
it improves the performance isolation. If a tenant puts a heavy
load on the application, only a single application instance is
affected, minimizing the impact for other tenants. Next, if the
tenants are physically distributed, an instance can be selected
that is close to the tenant’s location. Finally, and this might be
one of the most important reasons, locking and synchronisation
of data becomes easier as there is a one-to-one mapping from
the application server instance to the tenant data located in the
storage pool.

The multi-tenant SDS system presented in this paper can be
implemented on any elastic cloud system. An implementation
on a hybrid cloud in particular could however be very interest-
ing. In this case, the public cloud can be used for provisioning
the application servers, whereas all tenant data can be stored
on a geographically distributed private storage cloud. Using a
private cloud for the storage provides enough flexibility to
meet legal and business data archival requirements for the
tenant data, as compliance with regulatory policies on data
remains a key hurdle to cloud computing [12].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a software-defined storage
system for data-intensive multi-tenant applications. On every
application server instance the multi-tenant application is
running on top of a MTDS module, responsible for commu-
nication with the storage pool. In our approach, the tenants
are hierarchically organized using a tree structure, the tenant
tree, and the storage elasticity component invokes the HBP
algorithm to determine an optimized allocation of tenant data
over the different storage resources.

The implementation of the HBP algorithm has very low
execution times even for the worst-case scenario. Compared
to the FFBP algorithm, the HBP algorithm achieves a slightly
lower LUN utilization, but the average is still close to the
selected allocation factor. On the other hand, as data is
clustered based on selected attributes, the reallocation of tenant
data is more balanced compared to the FFBP algorithm, and
the algorithm will achieve a much better isolation of tenant
data as related tenants are allocated to a single LUN.

In future work, we will investigate techniques to further
reduce the migration size. The evaluation results presented in
this paper however confirm that the presented system could
provide a solid basis for implementing a multi-tenant SDS
system.

ACKNOWLEDGMENT

This research is partly funded by the IWT SBO DeCoMAdS
project.

REFERENCES

[1] M. Carlson, A. Yoder, L. Schoeb, D. Deel, and C. Prattr, “Software
defined storage,” SNIA, Tech. Rep., Mar. 2014. [Online]. Available:
http://www.snia.org/sds

[2] M. Armbrust, R. Fox, Armandoand Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria, “Above the clouds : A Berkeley view of cloud computing,”
University of California at Berkley, Tech. Rep., 2009.

[3] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework
for native multi-tenancy application development and management,” in
9th IEEE International Conference on E-Commerce and the 4th IEEE
International Conference on Enterprise Computing, E-Commerce, and
E-Services, 2007. CEC/EEE 2007., Tokyo, Japan, Jul. 2007, pp. 551 –
558.

[4] P.-J. Maenhaut, H. Moens, V. Ongenae, and F. D. Turck, “Scalable user
data management in multi-tenant cloud environments,” in Proceedings of
the 10th International Conference on Network and Service Management
2014 (CNSM2014), Rio de Janeiro, Brazil, Nov. 2014, pp. 268 – 271.

[5] ——, “Design and evaluation of a hierarchical multi-tenant data
management framework for cloud applications,” in The Seventh
IFIP/IEEE International Workshop on Management of the Future In-
ternet (ManFI2015), Ottawa, Canada, May 2015, pp. 1208 – 1213.

[6] S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Conference on Operating Systems Design and
Implementation (OSDI ’06), Nov. 2006.

[7] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush:
Controlled, scalable, decentralized placement of replicated data,” in
Proceedings of the 2006 ACM/IEEE Conference on SuperComputing
(SC ’06), 2006.

[8] D. Malanik and R. Jaek, “The performance of the data-cluster based on
the ceph platform with geographically separated nodes,” in Mathematics
and Computers in Sciences and in Industry (MCSI), 2014 International
Conference on, Sept 2014, pp. 299–307.

[9] J. Long, Storage Networking Protocol Fundamentals. Cisco Press,
2005.

[10] FLANDERS.be - the official website of Flanders. [Online]. Available:
http://www.flanders.be/en

[11] World Bank - Open Data. [Online]. Available: http://data.worldbank.org
[12] M. Henze, M. Grossfengels, M. Koprowski, and K. Wehrle, “Towards

data handling requirements-aware cloud computing,” in Proceedings
of the 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, Dec. 2013, pp. 266–269.

