

Analyzing the Divide between FPGA Academic and
Commercial Results

Elias Vansteenkiste
 Department of Electronics and Information Systems

Computer Systems Lab, Ghent University
Ghent, Belgium

Elias.Vansteenkiste@ugent.be

Alireza Kaviani and Henri Fraisse
Xilinx Inc., 2100 logic drive
San Jose, California, USA

{Alireza.Kaviani, Henri.Fraisse}@xilinx.com

Abstract— The pinnacle of success for academic work is often
achieved by having impact on commercial products. In order to
have a successful transfer bridge, academic evaluation flows need
to provide representative results of similar quality to commercial
flows. A majority of publications in FPGA research use the same
set of known academic CAD tools and benchmarks to evaluate
new architecture and tool ideas. However, it is not clear whether
the claims in academic publications based on these tools and
benchmarks translate to real benefits in commercial products. In
this work we compare the latest Xilinx commercial tools and
products with these well-known academic tools to identify the gap
in the major figures of merit. Our results show that there is a
significant 2.2X gap in speed-performance for similar process
technology. We have also identified the area-efficiency and
runtime divide between commercial and academic tools to be 5%
and 2.2X, respectively. We show that it is possible to improve
portions of the academic flow such as ABC logic optimization to
match the quality of commercial tools at the expense of additional
runtime. Our results also show that depth reduction, which is
often used as the main figure of merit for logic optimization
papers does not translate to post-routing timing improvements.
We finally discuss the differences between academic and
commercial benchmark designs. We explain the main differences
and trends that may influence the topic choice and conclusions of
academic research. This work emphasizes how difficult it is to
identify the relevant FPGA academic work that can provide
meaningful benefits for commercial products.

Keywords—FPGA; Benchmark Designs; CAD Tool Flows;
Academic vs Commercial; Vivado; Ultrascale; Verilog-To-Routing;
ABC;

I. INTRODUCTION
Commercial Field-Programmable Gate Arrays (FPGAs) have
been rapidly growing in both capacity and performance,
opening the door to a large number of applications. Advances in
process technology along with FPGA CAD tools and
architecture have enabled this growth. Further advances in both
tools and architecture are required to sustain this growth.
Potentially, academic research efforts in these areas could
contribute to this success by identifying promising tool or
architecture ideas. This is especially important as FPGAs serve

a wider range of applications compared to ASIC or ASSP
counterparts in semiconductor business.

FPGA architecture and tool ideas that are seeded from FPGA
academic community have decreased significantly over the last
decade. The few that are proposed do not offer significant
benefits when incorporated and evaluated in a commercial
framework. If this trend continues, the academic work in this
area might become irrelevant. This will adversely impact both
FPGA industry and academic community, as the products can
no longer leverage the broader academic ecosystem.

In this work, we claim one of the main reasons of this trend to
be the significant performance gap between the academic and
commercial framework. We try to examine this claim by
comparing the most prevalent academic architecture tools with
Xilinx Vivado used for UltraScale devices [1], [2]. When
academic tools lag behind the state of the art by a large
amount, it is easy to show improvement, but those
improvements do not translate to any benefits for commercial
tools and devices. After identifying the gap, we try to provide
guidance on how to reduce it and also provide a few rules of
thumb for assessing the merits of academic work.
The next section summarizes the related work. In section III,
we introduce both academic and commercial flows and
measure the gap for the main figures of merit. In Section IV a
hybrid commercial and academic tool flow is presented. It
shows that academic tools can perform on par with commercial
tools at the expense of extra runtime. Section V examines
another important factor in any FPGA assessment: benchmark
designs. We highlight the trends in how benchmarks are
changing and its impact on academic work. We provide a final
discussion and concluding remarks in section VI.

II. BACKGROUND AND RELATED WORK
The most popular academic open source tools used for FPGAs
are Versatile Place and Route (VPR) [3] and ABC logic
optimization and technology mapping [4]. There is also a front-
end synthesis tool, called ODIN II [5], which takes a Verilog
design and performs RTL elaboration. A recent academic
framework, called Verilog-To-Routing (VTR), combines ODIN

Fig. 1. The four frameworks used to compare commercial and academic
flows

II, ABC and VPR to offer a complete unified flow for FPGA
compilation [6]. We chose this well-known academic
framework as our academic reference because it is the most
flexible framework available. It gives researchers control over
every part of the framework from architecture to tools and
benchmarks designs. The front-end synthesis step produces a
Berkeley Logic Interchange Format (BLIF) file, which is read
by ABC to perform logic optimizations and technology
mapping to LUTs. VPR then packs the LUTs and FFs into
CLBs, places the CLBs and routes the whole design. There are
three main components in an evaluation framework: the target
FPGA architecture, the CAD tools and the benchmark designs.

There are two works that have also raised the issue of the
gap between commercial and academic results. The first one
provides the ability to compile designs for commercial devices
using a VTR-to-Bitstream (VTB) flow presented in [7]. The
VTB flow translates the mapped and placed circuits to an XDL
description, a format provided by Xilinx ISE tools. These XDL
text descriptions are translated to binary files and subsequently
the design is routed with Xilinx ISE’s PAR. VTR supports
FPGA routing but is unable to model complex routing
structures that exist in Xilinx FPGAs. New advances in the
VTB project [8] enables routing designs on Xilinx’ older
architectures, such as the Virtex6. The routed designs are
analysed by Xilinx ISE’s TRCE static timing analyser to get
reliable timing information. Our work is different in several
aspects: we use the most recent commercial and academic tools
(in contrast with a decade old commercial tools) and show that
the divide is actually much wider now. In [7], the authors
attribute the gap to the lack of support for carry logic, but we
used a newer version of VTR that contains carry logic support
and showed that it is not a key factor. The focus of VTB is to
realize a design on a commercial device and they achieved that
goal. However, XDL and the relevant flow are no longer
supported by Xilinx and the proposed flow will unfortunately
not work with the latest products, such as UltraScale.

A second work [9] focuses on addressing the mismatch in
benchmark designs by providing larger designs for the open
source community. They contributed 23 large benchmark
designs and 20 mid-size designs. They identify the critical path
delay gap as 50%, but they use a commercial tool for synthesis

providing a hybrid evaluation flow and this gap is only
measured on the benchmarks that did not fail. Their hybrid flow
was only able to place and route 13 of the 23 large designs.
They are also comparing to older 40nm products from Altera.
This framework can easily be used to test advancements in
place and route tools

In contrast to previous work, we focus on a new comparison
to identify the gap for the most recent products and tools and
show that it is much wider than stated in the literature. If the
quality of academic tools is inadequate such that the required
figures of merit are not met, there is little value in implementing
those designs on commercial products using the VTB flow. We
also address the area-efficiency and runtime scaling gaps. We
then take a deeper dive in one of the academic tools, ABC logic
optimization, to show that it is possible to achieve quality
results on par with commercial tools with some effort.

III. COMMERCIAL AND ACADEMIC TOOL COMPARISON
In order to make a fair comparison, we should use the same

benchmark designs and the same target architecture.
Unfortunately, VTR is not designed to compile for commercial
architectures. First, we compare Vivado and VTR for the
architectures available for the latest comparable process
technology nodes. Later, we will use the VTB flow to target a
commercial architecture and assess if the gap diminishes.

A. Evaluation frameworks
We selected the smallest 20nm Ultrascale Kintex device
(xcku035) with the largest package (ffva1156) and the fastest
speed grade to match that of academic architectures. Together
with the Vivado 2014.3 tool flow, we call this the commercial
implementation.
The academic target device is the most advanced architecture
closest to 20nm available in VTR. We choose
k6_frac_2ripple_N8_22nm, because it performed best in terms
of speed-performance of all the architectures available in VTR.
We will call this architecture VTR-22nm from here on. The
original architecture was sized for a 22nm high performance
process and we needed to resize the transistor-level circuit for
this architecture so that both commercial and academic devices
are optimized for the same nominal operating voltage (0.95V).
We used an automatic transistor sizing tool [9] and 22nm
predictive technology models optimized for high performance
[10]. It is worth noting that the process technology for xcku035
is a low power process technology, and hence our speed-
performance results for the academic flow will be somewhat
optimistic.
The VTR-22nm architecture contains carry chains, fracturable
36x36 multiplier blocks, and fracturable 32Kb memory blocks.
Each CLB contains 8 fracturable LUTs similar to that of the
xcku035, but contains only one flip-flop per LUT and no
distributed memory capabilities. The routing architecture was
kept simple with only length-four wires. We refer to the VTR-
22nm architecture together with VTR tool flow revision 4591
as the academic implementation and use it as a reference in
this section. As benchmark suite we used the 19 designs
available in the VTR framework. The results for the most
important figures of merit (area, maximum clock frequency

and compilation runtime) are listed in TABLE I and will be
discussed in the following subsections.

B. Speed-performance
Vivado is designed to compile a design for a set of known

constraints and not to find the highest possible operating
frequency for a given design. To find the maximum clock
frequency we started with constraining the designs with a clock
period that could be easily met. Subsequently the data path
delay of the most critical path in the clock domain was used as
a new constraint for the clock period. We repeated this process
until Vivado just failed the constraint with a violation of less
than 1ns. Another approach could be to constrain the design
with an unrealistic clock period like in VTR, for example 1ns,
but Vivado would recognize that it could never meet the
constraint and it would exit early. Therefore the latter approach
is not an option for the commercial flow.

As noted in TABLE I, the maximum clock frequency for all
benchmark designs is higher for the commercial
implementations compared to the academic implementations.
The geomean of the maximum clock frequencies of the
commercial implementations is 2.24 times higher than that of
the academic implementations. We believe this 2.24X divide in
quality of results is an important conclusion from this work. It
indicates why many academic FPGA architecture and tool
improvements cannot translate to realistic benefits for FPGA
industry. This wide gap includes architecture and tool
differences, but excludes differences caused by benchmark
designs and process technology.

Referring to previous work [9], we may also estimate that 50%
of this divide is due to synthesis and the rest is from the place

and route portion of the flow and the architecture difference.
We will discuss this further in the following sections.

C. Area-efficiency
Comparing the area-efficiency between commercial and

academic implementations is more difficult because of the
different hard blocks in the target architectures. The VTR-22nm
architecture contains fracturable 36x36 multiplier blocks and
fracturable 32 Kb memory blocks. The Ultrascale fabric has
versatile DSP48E2 blocks that can implement
27x18 multiplications, 48-bit addition/subtraction, XOR, and
some additional functionality. It also contains fracturable 36Kb
block RAMs.

Comparing the multiplier logic consumption for the academic
and commercial implementations, we find the commercial DSP
usage to be about twice the amount of academic multiplier
block usage. This corresponds with the size of the respective
multipliers. The only exception is stereovision1. The default
behaviour of Vivado is to implement the divisions in
stereovision1 without DSP blocks in contrast with VTR. This
leads, however, to an increased LUT count for Vivado, but a
faster circuit. Vivado chooses the most delay-optimal
implementation if there are enough resources available.

Academic implementations typically use more memory
blocks than the commercial ones. The Ultrascale fabric has
slightly larger memory blocks, but that is not the main reason.
The VTR benchmark designs contain a lot of shallow memories
and Vivado implements these shallow memories with
distributed memory. To overcome the issue of comparing
resource usage for different types of hard blocks, we define a
normalized area measure. The measure is expressed in terms of
CLB tiles and encompasses the CLB count and all hard block
occurrences:

TABLE I. OVERVIEW OF THE POST-ROUTING RESULTS FOR THE VTR BENCHMARKS

 Academic (VTR - k6_frac_2ripple_N8_22nm) Commercial (Vivado – UltraScale)
 Area Fmax Runtime Area Fmax Runtime
Benchmarks CLB Mult Mem Norm* (Mhz) (min) CLB DSP BRAM Norm* rel (Mhz) rel (min) rel
bgm 4259 11 0 4424 52 10.4 2150 22 0 2260 0,51 183 3,52 6.3 0.61
blob_merge 717 0 0 717 96 4.7 1437 0 0 1199 1,67 364 3.79 2.8 0.60
boundtop 280 0 1 300 146 4.5 813 0 1 836 2,79 367 2,52 2.8 0.63
diffeq1 33 5 0 108 64 4.3 78 9 0 123 1,14 135 2,11 1.6 0.36
diffeq2 21 5 0 96 81 4.3 34 9 0 79 0,82 149 1,84 1.5 0.35
LU8PEEng 2645 8 45 3665 16 8.5 2534 16 23 3143 0,86 24 1,51 5.2 0.61
LU32PEEng 8794 32 168 12634 16 25.1 8867 64 136 12315 0,97 23 1,46 9.2 0.37
LU64PEEng 17028 64 340 24788 16 59.4 15574 128 188 20538 0,83 26 1,63 18.5 0.31
mcml 8137 27 159 11722 27 32.1 6988 104 154 11050 0,94 55 2,01 13.2 0.41
mkDelayW~ 755 0 43 1615 117 5.2 140 0 27 761 0,47 645 5,51 1.9 0.37
mkSMAda~ 210 0 5 310 158 4.6 193 0 3 262 0,85 491 3,11 2.3 0.50
or1200 308 1 2 363 102 4.7 365 4 1 408 1,12 176 1,73 1.9 0.40
raygentop 266 7 1 391 148 4.6 390 9 0,5 446,5 1,14 469 3,18 1.9 0.41
sha 244 0 0 244 179 4.6 212 0 0 212 0,87 299 1,68 2.2 0.47
stereovision0 1195 0 0 1195 245 4.9 1013 0 0 1013 0,85 635 2,59 2.6 0.52
stereovision1 1916 46 0 2606 149 5.6 2511 0 0 2511 0,96 337 2,27 4.1 0.73
stereovision2 3290 201 0 6305 100 7.9 2213 270 0 3563 0,57 136 1,36 4.6 0.58
stereovision3 22 0 0 22 270 4.4 30 0 0 30 1,36 474 1,76 1.3 0.29
Geometric mean 0.95 2.24 0.46
Geometric Standard Deviation 1.52 1.45 1.30
Total 199.8 83.9

* Normalized Area: the total area expressed in terms of CLB tiles, it includes the DSP/Mult and Mem/BRAM usage, see equation (1) and (2)

Fig. 3. RAMB and DSP height vs CLB height, image taken from Vivado
Design Editor.

Fig. 2. Total Runtime for compiling the VTR benchmark designs for a single
run

 Areanorm, academic = nCLB + kmult.nmult + kmem.nmem (1)

 Areanorm, commercial = nCLB + kDSP.nDSP + kBRAM.nBRAM (2)

For the academic area constants kmult and kmem, we use the
minimum transistor width count as reported in the architecture
description for each type of hard block. We compare it to the
area used for one CLB tile in the newly sized academic
architecture [9]. Taking the interconnect area into
consideration, we set the constants to kmult = 15 and kmem = 20.
For the commercial area constants kDSP and kBRAM a similar
approach to the academic calculations is used, but we scale the
block areas based on multiplier bits and memory bits. Each
DSP and memory block pair has a height of 5 CLBs, as seen in
Fig. 2 from Vivado design editor. This results in the following
area constants, kDSP = 5 and kBRAM = 23. The hard block
occurrences and normalized Area is reported for each design in
Table I. The commercial implementations use on average 96%
of the normalized area used by academic implementations. This
gap is significant, but not a showstopper in contrast with the
other figures of merit we investigated.

D. Runtime
The benchmark designs were compiled on a workstation

with a 3.4 GHz quad-core Intel Core i7-3770 processor and
32 GB memory. In TABLE I, the runtime for each benchmark
design is reported for the commercial and academic flow. VTR
can only operate in a single-threaded mode, so to be fair we
compare it to Vivado restricted to only run a single thread. Even
in single-threaded mode Vivado is on average 2.2X faster than
VTR. This runtime gap is consistent with a geometric standard
deviation of 1.3. All benchmark designs compile faster when
using Vivado with runtimes ranging from 73% to 35% of the
runtime of VTR.

Fig. 3 shows the total runtime to compile all VTR benchmark
designs for both the commercial and academic flow and a
breakdown for each major step in the compilation. As a
reference we also included a run in which we let Vivado run
unrestricted. On our test machine this mode used 8-threads,
which decreased the total runtime from 1.45h to 1.1h. This is
not a huge decrease mainly because we only deal with smaller
benchmarks for which the runtime is so small that Vivado
cannot fully take advantage of multithreading. Overall we see
the same picture for the total runtime as for the separate
benchmark designs. The total runtime for Vivado is a little

under one hour and half and a little over 3 hours for VTR. So
Vivado compiles the benchmarks in less than half the time VTR
does. In Vivado the runtime is more equally divided between
the three major steps, synthesis, placement, and routing than in
VTR. In VTR, synthesis takes only 4% of the total runtime. The
placer in VTR is responsible for biggest chunk of runtime
(69%) followed by the routing step (27%).

We also considered the runtime scalability with respect to the
size of the benchmark designs. We choose the LUT count as
area figure and we only selected the designs with more than
20K LUTs to minimize the impact of the nonrecurring runtime
cost. The runtime for smaller designs is often dominated by
fixed portions, such as reading or writing the files. The fixed
portions don’t have a significant impact on scalability. The data
points for each flow are plotted in Fig. 4 and fitted using a
power regression model. The runtime scaling gap widens
proportional to the equation 0.14 ∙ 𝑥!.!", where x represents the
number of LUTs, so for each 60K LUT increase the runtime
gap doubles. We predict that the runtime gap will increase in
the same fashion beyond the 160K mark. This makes the
compile time of academic flows impractical for today’s FPGA
application sizes, because they easily surpass the 160K LUT
mark. The small number of designs shown in Fig. 4 might not
be sufficient for calculating a statistically valid scaling factor.
However, the trend of growing runtime gap, which is the main
message of this section, will hold as we add larger and more
designs to the graph.

Out of this comparison, placement is clearly a main cause of the
gap in runtime scalability. At its core, the VTR placer still uses
simulated annealing which is more runtime intensive and does
not scale as well as the analytical placement techniques used in
the Vivado placer. The academic framework could benefit
greatly from an open-source analytical placer, which is not
available to our knowledge at the moment of writing.

E. Using VTR for a Commercial Target Device
VTR is not designed to map to commercial devices but we
made an attempt to use the VTB flow introduced in the
previous work. In [7], the authors present a VTR-to-Bitstream
(VTB) flow that enables users to map to Virtex 6 devices.
Vivado does not support the older Virtex 6 devices. We
extended VTB to target the Virtex 7 vx330t device with the
help of the authors of [7]. We compared the frameworks 3 and
4 as shown in Fig. 1. VTB and Vivado target the same
commercial device. We choose to target the fastest speed grade

Fig. 5. Runtime scalability of the Academica and Commercial CAD tools
with respect to the size of the design.

and the largest footprint. This resulted in Vivado
implementations that consume 25% less area and are able to
operate at 2.1X higher operating frequencies on average than
VTB implementations. This is more or less in line with the gap
reported for the commercial versus academic comparison. The
only major difference was that the VTB was remarkably slower
than Vivado by a factor of 5.5X.

There is only a very slight reduction in speed-performance gap
if we compare Vivado versus VTB targeting a commercial
device (2.1X) and the commercial versus fully academic
comparison (2X). We attribute this reduction in the gap to a
better architecture, but conclusions are difficult here because
VTB is not designed to fully exploit this commercial
architecture, so the actual architecture gap could be much
wider. Our initial intention for using VTB was to identify which
part of the gap can be attributed to the architecture and which
part to the tools. We believe the large quality gap in the tools
may be misleading and hence we defer making solid
conclusions on the architecture gap to future work, after more
detailed investigations.

IV. HYBRID COMMERCIAL AND ACADEMIC
EVALUATION FLOW

We described the gap between academic and commercial
tools for FPGA design implementation in section III. However,
the main advantage of open-source academic tools is that they
are easier to change and augment toward a research goal. The
tools are often data-driven and skip unnecessary detail, helping
the researcher conclude faster. The question we are trying to
answer in this section is how to combine the credibility of
commercial tools with the flexibility of academic tools to reach
pragmatic architectural or tool conclusions. In contrast to
previous section, we use commercial tools as our baseline for
assessing a new tool flow.

We created a hybrid evaluation flow using Vivado and ABC
[1], which is a well-known academic tool for logic optimization
and technology mapping. The advantages of such a hybrid flow
are two-fold: 1) we can accurately quantify the quality of logic
optimization; 2) we can quickly evaluate architecture ideas or
opportunities in commercial tool optimization. Even if such

evaluation flow helps us detect failures for certain ideas, it will
prevent researchers from investing unnecessary additional time.

Fig. 5 summarizes the hybrid flow that we created. The key to
creating such a flow is identifying the best interception points to
exit and re-enter the commercial Vivado flow. Vivado synthesis
tool processes the design in three steps: elaboration,
architecture-independent optimizations, and technology
mapping. During RTL elaboration, common data path
operations such as additions and storage elements such as
memory blocks are identified and inferred. Architecture-
independent optimizations include constant propagation,
operation sharing, strength reduction; expression optimization,
finite state machine encoding/minimization, generic
restructuring and don't-care optimizations. During technology
mapping the optimized design is mapped onto target
architecture structures, such as DSP blocks, adders with
dedicated carry-chains, BRAMs, LUTs and FFs.

In the new hybrid flow, the combinational portion of the logic
gate network is cut out and written to a BLIF file. ABC reads in
the BLIF file and performs logic optimizations and mapping as
stated in the script given by the user. The script may contain
commands to restructure and balance the logic network and to
perform different mapping algorithms. After ABC
optimizations, the circuit mapped to LUTs is stitched back into
the design in Vivado. This new flow replaces the commercial
technology mapping and optimization with that of the academic
flow.

Initially, this new hybrid flow with ABC performed worse than
the baseline Vivado flow in all figures of merits: performance,
area and runtime. However, the differences were all within 2%
except for runtime. This indicates that the significant
performance gap we noted earlier is not due to logic
optimization portion of the flow. After a number of iterations
and modifications to both ABC and the script, we managed to
show some improvements compared to baseline Vivado.
According to our results 2.5% increase in maximum clock
frequency along with 1.8% decrease in area was achieved on
average for more than 80 commercial benchmark designs, as
summarized in TABLE II. These modest average improvements
compared to Vivado were achieved at the expense of additional
runtime in ABC.

Fig. 4. Hybrid flow for logic optimization

Fig. 6 depicts the maximum clock frequency ratio for each
design in the commercial suite, providing a more detailed view.
Fmax improved for roughly 70% of the designs and up to 20%
in the best cases. The main reason for improving the quality
was less emphasis on early depth reduction. Initial scripts
aggressively reduced the depth of the deepest paths in the
designs, which led to worse post routing results. This is
expected because at the time of technology mapping there is too
much uncertainty to predict the real critical path after routing.
The critical path could be dominated by routing and aggressive
depth reduction will adversely affect the final results. The ABC
script that produced the best results is available in [17]. It
contains multiple LUT mapping iterations interleaved with sum
–of-product balancing.

The hybrid flow helped us find the right balance between the
area and depth reduction by focusing on average depth
reduction and observing post-routing results from the
commercial tool. It is worthwhile to note that even the initial
results from the hybrid flow (before our optimizations) were
within a few percentage of the baseline Vivado flow. This
indicates that the synthesis gap observed in previous work is
not due to logic optimization portion of the academic flows.

We can make two high level observations using our hybrid
flow. First, the fact that we could reach the quality of
commercial tools and even improve the results for some designs
shows the potential for academic tools if used in a correct
framework. The second high level conclusion from this exercise
was that depth reduction does not translate to post routing
improvement directly. A good rule of thumb to estimate post-
routing benefits of the academic work that claim improvements
by reporting depth reduction is to divide the gain by an order of
magnitude. We further investigated this by focusing on depth-
oriented designs and confirmed that ABC indeed improves the
results by 5% on average on these designs. This is a significant
improvement even for commercial products and we will
elaborate on this classification more in the next section.

We also used this evaluation flow to dismiss some of the
published architecture ideas and tool optimizations quickly
without additional expensive investments in changing the
commercial flow. For example, previous work has suggested
using cascaded LUTs [18-19] as potential FPGA architecture
improvements, because they improved area and the depth of the
circuit. Since these ideas are often implemented in ABC
framework we used our hybrid flow to evaluate some of them.
We found that conclusions that are mainly based on early depth
reduction will not hold after routing the designs. Another
example is the and-inverter cones [20]. In this case the authors
further investigated their claims in a second publication [21]

and came to the conclusion that the observed benefits after
technology mapping did not translate to post-routing
improvements.

V. BENCHMARK DESIGN SUITE
An important aspect of any evaluation framework is the

benchmark designs. In this section we focus on highlighting the
differences between academic and commercial benchmark
suites.

A. Academic benchmark designs
Unfortunately it is hard to separate benchmark designs from

the framework they were written for, so we inspect the
benchmark designs with their framework in mind. Typically
used in academia are the well-known evaluation frameworks
such as the VPR framework [3], the VTR framework [6] and
the recent Titan framework [9].

The Versatile Place and Route (VPR) framework consists of 20
large benchmark designs synthesized by the Microelectronics
Centre of North Carolina (MCNC). VPR is used as place and
route tool and a homogeneous LUT-only architecture at 48nm
technology node as a target architecture. The MCNC
benchmarks are still quite popular [12-15] and the VPR
framework is still maintained as part of the VTR framework.

The Verilog-To-Routing framework (VTR) [2] includes several
benchmark designs described in Verilog. There is a range of
architectures that can be targeted in VTR and researchers can
add or tweak their own architecture. We used the most
advanced architecture available, called
k6_frac_2ripple_N8_22nm. Researchers working on
applications or tools will probably not change the default
architectures provided in the VTR framework.

The Titan framework [4] consists of 23 large benchmarks and
20 mid-sized benchmarks. They are synthesized with Quartus II
and VPR is used for backend of the flow to map to an
architecture closely matching the Altera Stratix-IV
architecture [15]. They used identical hard blocks, but the
routing architecture was only modelled approximately.
Unfortunately VPR does not succeed at routing 13 of the 23
large designs because of memory requirements or routing
congestion.

TABLE II. SUMMARY FOR THE HYBRID FLOW VS VIVADO

 Early depth Fmax Area (CLBs)

Whole suite -16 % + 2.5 % - 1.8 %
 High depth -24 % + 5 % - 3 %

 Low Depth -13.5 % + 0.4 % - 1 %
 Arithmetic -7 % + 1.1 %

- 1 %

The percentages indicate relative improvement for the geomean of the ratios

Fig. 6. Maximum clock frequency ratio for the hybrid flow versus the Vivado
baseline

Fig. 7. Benchmark Suite Profiles. For each framework, the benchmark
designs are classified in three categories depending on the paths and the type
of instances in the critical zone of the circuit, LUT dominant & High Depth
(LUT_HD), LUT dominant & Low Depth (LUT_LD) and Arithmetic
dominant.

B. Comparing with commercial benchmark designs
 We profiled more than 80 industry benchmark designs in
order to understand the differences with academic designs. The
academic designs are much smaller compared to the industry
benchmark designs we used, which typically have more than
100k LUTs. The other noticeable difference is that the majority
of VTR benchmark designs are I/O-bound. They also have
fewer memory and DSP components compared to industrial
designs. All these differences may contribute to misleading
academic conclusions in the academic frameworks. Some of
these differences such as size of the benchmark designs are
already highlighted in previous work [9].

In this work, we highlight and analyse another subtle, yet
important difference that may skew the academic conclusions.
Fig. 7 depicts how depth profile differs for various academic
and industrial designs compiled within their respective
framework. For each framework, the benchmark designs are
classified in three categories depending on the paths and the
type of instances in the critical zone of the routed circuit. For
the commercial framework, each benchmark category contains
around the same number of designs. For the VTR and Titan
benchmark designs, the category of designs with a LUT
dominant and shallow critical zone is under represented. Lastly,
the MCNC20 benchmark suite contains only LUT dominant
designs with deep critical zones. It is clear from this
comparison that academic benchmark suites contain relatively
much more designs with a high depth critical zone than
industrial benchmark suites.

A large number of academic publications, especially those that
use ABC, make conclusions based on depth improvement after
technology mapping. Therefore, it is important to understand
how depth reduction correlates to the end performance
improvement after routing. In the next subsection we dig
deeper into this depth profiling to understand the trends.

C. Depth classification of designs: discussion and trends
 Our depth classification is based on the profile of the critical
zone in the commercial benchmark designs. We define the
critical zone as all the paths in the design with 5% worst slack.
Taking into account the type of instances in the critical zone,

we observe that 68% of the designs’ critical zone is dominated
by LUT instances. The most occurring instance type is CARRY
blocks for 20% of the designs. The DSP blocks dominate the
critical zone for the 12% remaining designs. The average logic
depth of the DSP dominated designs is typically lower than the
carry dominated designs. We group both CARRY and DSP
dominated designs in the same class, the arithmetic designs,
because they show similar behaviour regarding our analysis.

The remaining designs with critical path dominated by LUTs
are further divided into 2 groups. We take into account the
average depth of the paths in the critical zone for the LUT
dominant circuits. 29% of the designs have an average logic
depth smaller than or equal to 2. This class contains heavily
pipelined designs with critical zone dominated by routing and
net delays. We also refer to this group of applications as low
depth. The other group contains benchmark designs with an
average logic depth higher than 2.

We now revisit the results of our hybrid flow explained in
section IV in the context of this logic depth classification. The
results are summarized in TABLE II. The hybrid flow
augmented with ABC has an average 5% higher maximum
clock frequency and uses on average 3% less CLBs for the high
depth, LUT-dominant designs. LUT-dominant, low depth
designs show no significant improvement in performance, but
they show a 1% area reduction. For the arithmetic dominant
circuits the new flow produces solutions with 1.1% higher
clock frequency and 1% lower CLB usage.

Our results show that ABC advantages for performance are
mostly applicable to a third of the designs which have critical
paths with a lot of logic levels. This is in line with the academic
literature where most of ABC work is focused on depth
reductions. However, the FPGA application trends are in the
direction of highly pipelined designs with lower depth.
Therefore, these advantages will be less pronounced in the
future. The representativeness of academic benchmark suites
could be improved by adding low-depth designs. Another
important observation is that depth reduction no longer
translates to significant post-routing delay improvement in
commercial frameworks.

VI. CONCLUDING REMARKS
We examined the divide between the quality of the FPGA

configurations produced by the commercial and academic
frameworks to show that it has grown beyond acceptance. For
example, the speed-performance quality gap is more than
2.2X. This makes it hard to assess the merits of academic
results, because it is much easier to improve something that is
so far from optimal. On the other hand, we showed that it is
still possible to use academic tools in a credible framework
that is a hybrid with a commercial framework. Our results
showed that close to 5% improvement is possible on average
for designs with high depth paths in the critical zone. This
work also highlighted a trend in industrial applications towards
low depth, highly pipelined designs. Designs with shallow
LUT dominated critical zones are under-represented in the
academic frameworks. This further emphasizes the need for
updating benchmark designs and suggests that academic tools

need to focus on other optimizations such as retiming instead
of early depth reduction.
 Academic contributions in the area of FPGA architecture
and tools are still possible, but only if the wide divide
highlighted in this work is addressed or academic work is done
in the context of intercepting commercial framework at the
right access points in the flow. Such effort requires joint
cooperation and involvement of academic and commercial
interested parties. Commercial parties are often questioning the
return of investment on such efforts due to significant gap. On
the other hand, some academics dismiss the importance of
quality gap as the responsibility of the industry. This is leading
to a tentative stale-mate and the solution requires contribution
from both parties. Industry needs to provide easier interface at
appropriate interception points for their tools. Academics need
to build hybrid flows that use commercial framework with the
exception of the portion under investigation.
Other academic FPGA work in the areas of applications or
where commercial tools are evolving such as high-level
synthesis is still relevant if quality of results is properly
maintained. This may also imply combining them correctly
with the relevant commercial framework and collaboration
between industry and academic ecosystem. We also encourage
academic researchers to use commercial tool flows and
architectures as a baseline when possible. The evaluation
framework we used is available online at [17]. It includes the
VTR benchmarks partly rewritten to enable compilation with
Vivado and a collection of scripts to derive the statistics used
in this paper.

ACKNOWLEDGMENT
We want to thank Eddie Hung for the support with using the
VTR-to-bitstream extension. The opinions expressed by
authors are theirs alone and do not represent the opinions of
Xilinx and are not indications of any future policy on FPGA
software or hardware held by Xilinx.

REFERENCES

[1] Xilinx Inc. (2015, April) “UltraScale Architecture and Product
Overview” [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds890-
ultrascale-overview, April 27, 2015

[2] Xilinx Inc. (2015, April) “Vivado Design Suite User Guide, Xilinx
Inc” [Online]. Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx20
15_1/ug910-vivado-getting-started.pdf,

[3] J. Luu,, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, K.
Kent and J. Rose, “VPR 5.0: FPGA CAD and architecture
exploration tools with single-driver routing, heterogeneity and
process scaling,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol 4 (4), 2011.

[4] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification, Berkeley, CA: 2014.
http://www.eecs.berkeley.edu/~alanmi/abc/

[5] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “ODIN II-an
open-source verilog HDL synthesis tool for CAD research,” in Field-
Programmable Custom Computing Machines (FCCM), 2010 18th
IEEE Annual International Symposium on, 2010, pp. 149-156.

[6] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K.
Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J.
Anderson, J. Rose and V. Betz "VTR 7.0: Next Generation
Architecture and CAD System for FPGAs," ACM TRETS, Vol. 7,
No. 2, June 2014, pp. 6:1 - 6:30.

[7] E. Hung, E. Fatemeh, and S. Wilton, "Escaping the academic
sandbox: Realizing VPR circuits on Xilinx devices," in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE
21st Annual International Symposium on., 2013.

[8] E. Hung, "Mind The (Synthesis) Gap: Examining Where Academic
FPGA Tools Lag Behind Industry," in 25th International Conference
on Field Programmable Logic and Applications (FPL), 2015.

[9] K. E. Murray, S. Whitty, S. Liu, J. Luu and V. Betz, "Timing Driven
Titan: Enabling Large Benchmarks and Exploring the Gap Between
Academic and Commercial CAD", ACM Trans. Reconfig. Technol.
Syst., , vol. 8 no. 2, pp.10:1-10:18, 2015

[10] C. Chiasson and V. Betz. "COFFE: Fully-Automated Transistor
Sizing for FPGAs", in IEEE International Conference on Field-
Programmable Technology (FPT), Kyoto, 2013, pp. 34-41.

[11] W. Zhao and Y. Cao, "New generation of Predictive Technology
Model for sub-45nm early design exploration," in IEEE Transactions
on Electron Devices, vol. 53, no. 11, November 2006, pp. 2816-
2823.

[12] A. Petkovska, D. Novo, A. Mishchenko and P. Ienne, “Constrained
interpolation for guided logic synthesis,” in Computer-Aided Design
(ICCAD), 2014 IEEE/ACM International Conference on, 2014, pp.
462-469.

[13] DeHon, André, and Nikil Mehta. "Exploiting partially defective
LUTs: Why you don't need perfect fabrication," in IEEE
International Conference on Field-Programmable Technology
(FPT), Kyoto, 2013, pp. 12-19.

[14] P. E. Gaillardon, X. Tang, G. Kim and G. De Micheli (2015). “A
Novel FPGA Architecture Based on Ultrafine Grain Reconfigurable
Logic Cells.” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 2015, to appear, available online (early access).

[15] S. U. Rehman, A. Blanchardon, A. Ben Dhia, M. Benabdenbi, R.
Chotin-Avot, L. Naviner, L. Anghel, H. Mehrez, E. Amouri and Z.
Marrakchi, "Impact of Cluster Size on Routability, Testability and
Robustness of a Cluster in a Mesh FPGA," in VLSI (ISVLSI), 2014
IEEE Computer Society Annual Symposium on, Tampa, FL, 2014,
pp. 553 – 558.

[16] Altera Corporation. (2008, November) “Stratix IV Device
Handbook” [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/stratix-
iv/stratix4_handbook.pdf

[17] E.Vansteenkiste, An Evaluation Framework for an Acadamic and
Commercial comparison. 2015.
https://github.com/EliasVansteenkiste/EvaluationFramework

[18] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
“Mapping into LUT structures,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2012, pp. 1579-1584.

[19] A. Mishchenko, "Enumeration of irredundant circuit structures," in
Proceedings of International Workshop on Logic and Synthesis, San
Francisco, CA, 2014.

[20] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. Ienne, “Rethinking
FPGAs: Elude the Flexibility Excess of LUTs with And-Inverter
Cones,” in Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, 2012. ACM, New York, NY,
USA, pp. 119-128.

[21] G. Zgheib, L. Yang, Z. Huang, D. Novo, H. Parandeh-Afshar, H.
Yang and P. Ienne (2014, February). “Revisiting and-inverter
cones,” in Proceedings of the ACM/SIGDA international symposium
on Field-programmable gate arrays, 2014. ACM, New York, NY,
USA, pp. 45-54

