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Abstract. Is it possible to determine the stability function of an exponentially-fitted Runge-Kutta method, without actually
constructing the method itself? This question was answered in a recent paper and examples were given for one-stage methods.
In this paper we summarize the results and we focus on two-stage methods.
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EXPONENTIALLY-FITTED RUNGE-KUTTA METHODS

The most general form of an exponentially-fitted Runge-Kutta method for solving

y′ = f (x,y) , (1)

is

yn+1 = γ yn+h
s

∑
i=1

bi f (xn+ci h,Yi)

whereby

Yi = γi yn+h
s

∑
j=1

ai j f (xn+c j h,Yj) , i = 1, . . . ,s.

With such a method, a generalised Butcher tableau can be associated:

c1 γ1 a11 . . . a1s
c2 γ2 a21 . . . a2s
...

...
...

.. .
...

cs γs as1 . . . ass

γ b1 . . . bs

or
c Γ A

γ bT
.

The coefficients of these EFRK methods in general depend uponthe productz0 := ω h whereω is a parameter that
can be related to the solution of the problem to be solved. In fact, EF methods are designed to solve problems which
have an exponential behaviour or (in the caseω is purely imaginary) a periodic behaviour. To construct such an EFRK
method, a set of linear functionals can be introduced [1]:

{

Li [y(x);h] = y(x+ci h)− γi y(x)−h ∑s
j=1ai j y′(x+c j h) , i = 1, . . . ,s

L [y(x);h] = y(x+h)− γ y(x)−h ∑s
i=1biy′(x+ci h) .

Next, conditions are imposed onto these functionals. For each stage of the method, a so-called fitting space is
determined. Each stage containss+ 1 parameters and for each stage the same fitting spaceS of dimensions+ 1
can be considered.

It is well-known that collocation offers an alternative wayto construct such methods: a functionP(x) ∈ S is
constructed such that

{

P(xn) = yn
P(xn+ci h)′ = f (xn+ci h,P(xn+ci h)) , i = 1, . . . ,s.

(2)

The method is then defined by imposingyn+1 := P(xn+h).
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Vanden Berghe et al. [2] and Calvo et al. [3] have constructedEFRK methods withS = {xqe±ωx|q= 0, 1, . . . ,P}∪
{xq|q= 0, 1, . . . ,K} andS = {e±qωx|q= 1, . . . ,P+1}∪{xq|q= 0, 1, . . . ,K} resp. where 2(P+1)+K+1= s+1.
Note that a generalisation of both approaches is to considerS = {eωqx|q = 1, . . . ,s+ 1}, whereω1, . . . ,ωs+1 take
different values.

THE STABILITY FUNCTION OF EFRK METHODS

In the case of initial value problems, the stability the method plays an important role and the stability properties of the
methods should be examined. Therefore, the method is applied to the linear equation

y′ = λ y (3)

giving rise to a relation of the formyn+1 = R(z,z0)yn with z := λ h. Independently of the specific choice for the space
S , the stability functionR(z,z0) of an EFRK method can be written as

R(z,z0) = γ +zbT (I −zA)−1 Γ

whereR is a rational function inz with coefficients that depend uponz0. When the parameter(s) of an EFRK method
tend(s) to 0, the classical RK method of collocation type is found. Its stability function is then given by (we omit the
second argument, since it is not present in the expression)

R(z) = 1+zbT (I −zA)−1e= ez+O(zp+1) ,

wheree is the vector of lengthswith unit entries ands≤ p≤ 2s.
In [4] it is shown that for an EFRK method that is fitted to the functionsxqeωx, q= 0, 1, . . . ,P the conditions that

should be imposed, can be written down as

∂ q

∂ qz
R(z,z0)

∣

∣

z=z0
= ez0 q= 0, 1, . . . ,P. (4)

One notices that in the special caseω = 0, i.e.z0=0, the classical conditionsR(q)(0)= 1,q= 0, 1, . . . ,P, are obtained,
which means thatR(z)−exp(z) =O(zP+1). The results can be extended to methods that are fitted so several parameters
ω. For instance, suppose that a method is fitted for two valuesω andω ′. We can then denote the corresponding stability
function asR(z,{z0,z′0}) wherez0 := ω h andz′0 = ω ′h and the method will be fitted to{xqeωx,xqeω ′x}, q= 0, . . . , P
iff

∂ q

∂ qz
R(z,{z0,z

′
0})

∣

∣

z=z0
= ez0 and

∂ q

∂ qz
R(z,{z0,z

′
0})

∣

∣

z=z′0
= ez′0 , q= 0, . . . , P.

In particular, an EFRK method that is fitted to the space of functions{1, x, . . . , xP1}∪{xqeωx|q= 0, 1, . . . ,P2}, has to
satisfy:

{

∂ q

∂ qzR(z,{z0,0})
∣

∣

z=0 = 1 q= 0, 1, . . . ,P1
∂ q

∂ qzR(z,{z0,0})
∣

∣

z=z0
= e±z0 q= 0, 1, . . . ,P2 .

It was also shown in [4] that nice relations exist between stability functions and the order stars: suppose a method
Mk,l (the number of stages does not really matter here) is built tointegrate exactly all functions in the space

Sk,l (ω) = Span{1, x, . . . , xk−1, eω x, xeω x, . . . , xl−1eω x} .
For the equation (3), this gives rise toyn+1 = Rk,l (z,z0)yn.

On the other hand, following Lawson [5] and definingu(x) = e−ω xy(x) the equation (3) becomesu′ = (λ −ω)u.
If y∈ Sk,l (ω), thenu∈ Sl ,k(−ω), and this then leads toun+1 = Rl ,k(z− z0,−z0)un, from whichyn+1 = ez0 Rl ,k(z−
z0,−z0)yn is obtained. In general, we thus have

Rk,l (z,z0) = ez0 Rl ,k(z−z0,−z0) . (5)

For the corresponding order star, this then means
∣

∣

∣

∣

Rk,l (z,z0)

ez

∣

∣

∣

∣

=

∣

∣

∣

∣

Rl ,k(z−z0,−z0)

ez−z0

∣

∣

∣

∣

. (6)



THE TWO STAGE-CASE

The one-stage case has been discussed in detail in [4]. In this paper, we will focus on the two-stage case. For a two-
stage method, the stability function will be a rational approximation of degree at most two in both the numerator and
the denominator, i.e.

R(z,z0) =
a0+a1z+a2z2

1+b1z+b2z2 ,

wherea0, a1, a2, b1 and b2 can depend uponz0. There are five degrees of freedom, so we can imposei + j = 5
conditions: ∂ q

∂ qzR(z,z0)
∣

∣

z=0 = 1, q = 1, . . . , i and ∂ q

∂ qzR(z,z0)
∣

∣

z=z0
= ez0, q = 1 . . . , j, i.e. we consider the stability

functions that are obtained by fitting to{1, x, . . . ,xi−1} ∪ {eω x, xeω x, . . . ,x j−1eω x}. Then we obtain six different
stability functions that are denoted asR̂i, j(z,z0)

• R̂5,0 : a0 = 1, b1 = a1−1 , b2 = a2−a1+
1
2, a1 =

1
2, a2 =

1
12

• R̂4,1 : a0 = 1, b1 = a1−1 , b2 = a2−a1+
1
2, a1 =

1
2 +φ , a2 =

1
12+

φ
2

φ =

(

12+z0
2−6z0

)

ez0 −12−z0
2−6z0

12z0 ((z0−2)ez0 +z0+2)

• R̂3,2 : a0 = 1, b1 = a1−1 , b2 = a2−a1+
1
2,

a1=

(

z3
0−2z2

0+2z0−8
)

ez
0+4+(4−2z0)e2z0

2z0
(

z2
0+2

)

ez
0−2z0e2z0 −2z0

a2=

(

4−4z0−z2
0−z3

0

)

ez
0−2+

(

−2+4z0−z2
0

)

e2z0

2z2
0

(

z2
0+2

)

ez
0−2z2

0e2z0 −2z2
0

Making use of (5), the explicit form of the functionŝR2,3, R̂1,4 and R̂0,5 can be determined. All these functions
reduce toR̂5,0(z), the Padé approximant of order[2/2] of ez, for z0 → 0.

In Figure 1 the stability regions, the order stars and the deviation from ez along the real axis for these functions have
been shown for the casez0 =−3. Starting at the left side witĥR5,0, which is exactly A-stable, and going to the right,
we see that the stability region (i.e. the gray area) grows. From the corresponding order stars, we can learn how well
the stability function approximates ez for z= 0 andz= z0. Indeed, we can see that an approximation of orderp in
z= z0 or z= 0 results in an order star in that point with 2(p+1) equal sectors. Also the relations (6) that exist between
the different order stars are clearly illustrated. The bottom row, which shows the differences ez− R̂i, j(z,z0) also shows
the orders of approximation inz= z0 andz= 0.

On the other hand, given two nodesc1 andc2 we can construct 2-stage EFRK methods and then we obtain the
following stability functions

• S3,0(ω) = Span{1, x, x2}

R{c1,c2}
3,0 (z) =

P{c1−1,c2−1}
3,0 (z)

P{c1,c2}
3,0 (z)

with P{c1,c2}
3,0 (z) = 1− 1

2
(c1+c2)z+

1
2

c1c2z2

• S2,1(ω) = Span{1, x, eω x}

R{c1,c2}
2,1 (z,z0) =

P{c1−1,c2−1}
2,1 (z,z0)

P{c1,c2}
2,1 (z,z0)

with

P{c1,c2}
2,1 (z,z0) = 1− (c1z0+1)ec2z0 − (c2z0+1)ec1z0

z0 (ec2z0 −ec1z0)
z+

c1 (ec2z0 −1)−c2 (ec1z0 −1)
z0 (ec2z0 −ec1z0)

z2

• S1,2(ω) = Span{1, eω x, xeω x} :

R{c1,c2}
1,2 (z,z0) = ez0 R{c1,c2}

2,1 (z−z0,−z0)

• S0,3(ω) = Span{eω x, xeω x, x2eω x} :

R{c1,c2}
0,3 (z,z0) = ez0 R{c1,c2}

3,0 (z−z0)



FIGURE 1. The stability regions (top) and the order stars (middle) for the functionsR̂5−i,i(z,z0), i = 0, . . . , 5, for z0 = −3. For
each picture, both axes vary between−7 en 75. In the lower part, the difference with ez along the real axis is shown. Again the
x-axis covers the interval[−7,7], they-axis shows the interval[−0.05,0.05].

We thus have two sets of stability functions : functionsR̂j,5− j(z,z0), j = 0, . . . ,5 that are determined by imposing

5 conditions on a rational function and functionsR{c1,c2}
i,3−i (z,z0), i = 0, . . . ,3 that are obtained by constructing 2 stages

EFRK methods fitted to 3 dimensional set. One could wonder whether it is possible to choosec1 andc2 in such a way
thatR{c1,c2}

i,3−i (z,z0) coincides withR̂j,5− j(z,z0) for some j with i ≤ j ≤ i +2. E.g. it is well-known thatR{c1,c2}
3,0 (z,z0)

coincides withR̂5,0(z,z0) iff {c1,c2}= {3−
√

3
6 , 3+

√
3

6 }, but is it also possible to coincide witĥR4,1(z,z0) or R̂3,2(z,z0) .
Yes it is possible, but in that casec1 andc2 depend uponz0, as shown in the left part of Figure 2.
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FIGURE 2. Behavior of the coefficientsc1 and c2 to satisfy (from left to right)R{c1,c2}
3,0 (z,z0) = R̂4,1(z,z0), R{c1,c2}

3,0 (z,z0) =

R̂3,2(z,z0), R{c1,c2}
2,1 (z,z0) = R̂4,1(z,z0), R{c1,c2}

2,1 (z,z0) = R̂3,2(z,z0).
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