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ABSTRACT
The growing speed gap between memory and processor makes
an efficient use of the cache ever more important to reach
high performance. One of the most important ways to im-
prove cache behavior is to increase the data locality. While
many cache analysis tools have been developed, most of
them only indicate the locations in the code where cache
misses occur. Often, optimizing the program, even after pin-
pointing the cache bottlenecks in the source code, remains
hard with these tools.

In this paper, we present two related tools that not only
pinpoint the locations of cache misses, but also suggest source
code refactorings which improve temporal locality and thereby
eliminate the majority of the cache misses. In both tools,
the key to find the appropriate refactorings is an analysis of
the code executed between a data use and the next use of the
same data, which we call the Intermediately Executed Code
(IEC). The first tool, the Reuse Distance VISualizer (RD-
VIS), performs a clustering on the IECs, which reduces the
amount of work to find required refactorings. The second
tool, SLO (short for “Suggestions for Locality Optimiza-
tions”), suggests a number of refactorings by analyzing the
call graph and loop structure of the IEC. Using these tools,
we have pinpointed the most important optimizations for
a number of SPEC2000 programs, resulting in an average
speedup of 2.3 on a number of different platforms.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers,Debuggers,Optimization; D.2.8 [Software Engineer-
ing]: Metrics—Performance measures
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1. INTRODUCTION
The widening speed gap between processor and main mem-

ory makes low cache miss rates ever more important. The
major classes of cache misses are conflict and capacity misses.
While conflict misses are caused by conflicts in the internal
cache structure, capacity misses are caused by poor tempo-
ral or spatial locality. In this paper, we propose two tools
that help to identify the underlying reason of poor temporal
data locality in the source code.

1.1 Related Work
In recent years, compiler methods have been devised to

automatically increase spatial data locality, by transform-
ing the data layout of arrays and structures, so that data
accessed close together in time also lays close together in
the address space [9, 11, 17, 19, 22, 33]. On the other hand,
temporal locality can only be improved by reordering the
memory accesses so that the same addresses are accessed
closer together. Advanced compiler methods to do this all
target specific code patterns such as affine array expressions
in regular loop nests [11, 18, 22], or specific sparse matrix
computations [14, 15, 24, 27]. For more general program
constructs, fully-automatic optimization seems to be very
hard, mainly due to the difficulty of the required dependence
analysis. Therefore, cache and data locality analysis tools
and visualizers are needed to help programmers to refactor
their programs for improved temporal locality.

void ex (double *X, double *Y, int len, int N)

{
int i,j,k;

for(i=0; i<N; i++) {
for(j=1; j<len; j++)

Y[j]=Y[j]*X[i]; // 39% of cache misses
for(k=1; k<len; k+=2)

Y[k]=(Y[k]+Y[k-1])/2.0;// 61% of cache misses
}

}

Figure 1: First motivating example, view on cache
misses given by traditional tools. N=10, len=100001.
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(a) view of reference pairs with long-distance reuse in
RDVIS.

(b) histogram of long-distance reuses. Gray scales cor-
respond to the arrows in (a).

(c) graphical view of intermediately executed code in
RDVIS, and associated cluster analysis. (d) view of Intermediately Executed Code of resp. the

light and the dark gray cluster in (c).

Figure 2: First motivating example, views produced by RDVIS. The colors were manually changed to gray
scale, to make the results readable in this black-and-white copy of the paper.

Most existing cache and data locality analyzers measure
the locality or the cache misses and indicate at which lo-
cations in the source code, or for which data structures,
most cache misses occur [2, 4, 5, 8, 12, 13, 20, 21, 23, 28,
29, 32]. While this information is helpful in identifying the
main bottlenecks in the program, it can still be difficult to
deduce a suitable program transformation from it. In this
regard, a few of these tools provide additional support for
finding the underlying cause of conflict misses (e.g. CVT[28],
CacheVIZ[32], YACO[25]) or the underlying cause of poor
spatial locality (e.g. SIP[4]).

In contrast, we present a method to help identify the un-
derlying causes of poor temporal data locality. Basically,
poor temporal locality results when a large amount of other
data is accessed between two consecutive uses of the same
data. Improving the locality requires diminishing the vol-
ume of data accessed between use and reuse. The source
code executed between use and reuse is responsible for ac-

cessing the large data volume, resulting in a long reuse dis-
tance. That source code is called the Intermediately Exe-
cuted Code (IEC) of that reuse. Consequently, to improve
the temporal data locality, a refactoring of the IEC is re-
quired.

In this paper, we present two tools that analyze the IEC
in different ways to pinpoint the required refactorings: RD-
VIS (Reuse Distance VISualizer), which has been discussed
earlier in [7], and SLO (Suggestions for Locality Optimiza-
tions). RDVIS represents the IEC as a set of basic blocks ex-
ecuted between long-distance reuses. In a typical program,
there are a huge number of data reuses, and consequently
a huge number of corresponding IECs. RDVIS applies a
cluster analysis to the IECs so that the main patterns of
poor locality-generating source code are revealed. Based on
a visual representation of the resulting clusters and high-
lighting of the corresponding source code, the programmer
can deduce the necessary program optimizations. In SLO,



the loop structure and the call graph of the IEC is also
taken into account, allowing it to go one step further than
RDVIS. SLO pinpoints the exact source code refactorings
that are needed to improve locality. Examples of such refac-
torings are loop tiling, and computation fusion, which are
demonstrated in the motivating examples in section 2. In
section 3, reuse distances and associated terms are defined.
Section 4 describes how RDVIS analyzes the IEC. Section 5
presents the analyses performed by SLO on the IEC to find
the appropriate source code refactorings. In section 6, we
provide a few case studies where these tools have been used
to identify the required refactorings for a number of real-
world programs from the SPEC2000 benchmarks. For two
of them, we applied the necessary transformations, leading
to an average cross-platform speedup of about 2.3. Con-
cluding remarks are given in section 7.

2. MOTIVATING EXAMPLES
We start by showing two small code examples where the

indication of cache misses with traditional tools does not
clearly reveal how to optimize the programs. Furthermore,
we show how RDVIS and SLO visualize the intermediately
executed code of long-distance reuses, and how that makes it
easier to find source code refactorings that improve temporal
locality.

2.1 Example 1: Intra-Procedural Loop Reuses
The code in figure 1 shows a small piece of code, where

a traditional tool would show that the first statement is
responsible for about 39% of all cache misses and the second
statement produces 61% of them. While this information
indicates where cache misses occur, it is not directly clear
how the locality of the program can be improved to diminish
the number of cache misses.

The views produced by our tools are shown in figure 2
for RDVIS, and in figure 3 for SLO. For each pair of refer-
ences that generate many long-distance reuses, an arrow is
drawn, starting at the reference that accesses the data first,
and pointing to the reference that reuses that data after a
long time. Figure 2(a) shows the four pairs of references
that generate the majority of long-distance reuses: (Y[k],
Y[j]), (Y[k-1], Y[j]), (Y[j], Y[k]) and (Y[j], Y[k-1]).
Figure 2(b) shows that each of those 4 pairs generate about
the same amount of long-distance reuses at distance 217,
meaning that about 217 other elements are accessed between
those reuses. (In this example, N=10 and len=100001).
When the cache can contain 210 elements (as indicated by
the background), all the reuses at a larger distance lead to
cache misses. So, the reuses at distance 217 must be made
smaller than 210, in other words, largely diminishing the
amount of data accessed between use and reuse.

To optimize each of the four arrows in figure 2(a), the first
step is to pinpoint which code is responsible for generating
the accesses between use and reuse. The second step is to
refactor the code so that fewer data elements are accessed
between use and reuse. RDVIS records the basic blocks
executed between each use and reuse, and allows to visu-
ally indicate the corresponding source code for each arrow.
Besides an evaluation examining each arrow separately, RD-
VIS also contains a cluster analysis. The arrows with similar
IEC are put in the same cluster. As an example, figure 2(c)
shows how RDVIS graphically represents the result of the
cluster analysis. On the left hand side, the code executed

(a) 5 different optimizations indicated by gray scale, with
respect to the reuse distance of the reuses they optimize,
as shown by SLO

(b) Indication of the two optimizations for the reuses at
distance 217, as indicated by SLO. The light gray op-
timization indicates fusion of the two inner loops. The
dark gray optimization requires tiling the outer loop.

Figure 3: First motivating example, SLO view. The
colors were manually altered to gray scale, to make
the results readable in this black-and-white copy of
the paper.

between use and reuse is graphically represented. There are
four horizontal bands, respectively representing the IEC of
the four arrows in figure 2(a). In each band, the basic blocks
in the program are represented, left to right. If a basic block
is executed between use and reuse, it is colored in a shade
of gray, otherwise it is nearly white. Originally, RDVIS pro-
duces a colored view with higher contrast. Here, the colors
were converted to enhance readability in black-and-white.
Figure 2(c) shows that the code executed between use and
reuse of arrows 1 and 2 are identical. Also the code exe-



Figure 4: Code and left-over long reuse distance
after loop fusion.

cuted between use and reuse of arrow 3 and 4 are identical.
On the right hand side, the cluster dendrogram graphically
indicates how “similar” the IEC is for each arrow. In this
example, the user has manually selected two subclusters. It
shows that 52.6% of the long distance reuses are generated
by the light gray cluster, while 47.4% are generated by the
dark gray cluster. Furthermore, in figure 2(d), the IEC for
the two clusters has been highlighted in the source code by
RDVIS. The code that is executed between use and reuse
is highlighted in bold. This shows that for the light gray
cluster, the uses occur in the j-loop, while the reuses occur
in the k-loop. Both the use and the reuse occur in the same
iteration of the i-loop, since the loop control code: i<N;

i++ is not highlighted. These two arrows can be optimized
by loop fusion, as is discussed in detail below. In the dark
gray cluster, it shows that the control of loop i: i<N; i++

is executed between use and reuse. Hence the use and reuse
occur in different iterations of the outer i-loop. The expe-
rienced RDVIS-user recognizes from this pattern that loop
tiling needs to be applied, as discussed in more detail below.

In contrast to RDVIS, where the programmer needs to
examine the Intermediately Executed Code to pinpoint op-
timizations, SLO analyzes the IEC itself, and interactively
indicates the optimizations that are needed. For example,
in figure 3(b), the required loop fusion and loop tiling are
indicated by a bar on the left hand side. Furthermore, the
histogram produced by SLO indicates which reuses can be
optimized by which optimization in different colors, e.g. see
figure 3(a). The upper histogram shows the absolute num-
ber of reuses at a given distance. The bottom histogram

Figure 5: Code and left-over long reuse distance
after loop tiling.

shows the fraction of reuses at a given distance that can be
optimized by each transformation.

Below, we explain how loop fusion and loop tiling can be
used to improve the locality and performance. These two
transformations are the most important optimizations for
improving temporal locality in loops.

2.1.1 Optimizing Pattern 1: Loop Fusion
From both the views produced by RDVIS (fig. 2(d) at the

top) and SLO (fig. 3(b) at the top), it shows that about
half of the long-distance reuses occur because element Y[j]
is used in the first loop, and it is reused by references Y[k]

and Y[k-1] in the second loop. The distance is long because
between the reuses, all other elements of array Y are accessed
by the same loops. For this pattern, the reuse distance can
be reduced by loop fusion: instead of running over array Y

twice, the computations from both loops are performed in
one run over the array. In order to fuse the loops, the first
loop is unrolled twice, after which they are fused, under the
assumption that variable len is odd, resulting in the code in
figure 4. The histogram in the figure shows that the long-
distance reuses targeted have all been shortened to distances
smaller than 25. This results in a speedup of about 1.9 on
a Pentium4 system, due to fewer cache misses, see table 1.

2.1.2 Optimizing Pattern 2: Loop Tiling
After fusing the inner loops, the code can be analyzed

again for the causes of the remaining long reuse distance
patterns. Figure 4 shows how SLO indicates that all left-



version exec. time speedup

orig 0.183s
fused 0.098s 1.87

fused+tiled 0.032s 5.72

Table 1: Running times and speedups of the code
before and after optimizations, on a 2.66Ghz Pen-
tium4, for N=10, len=1000001.

1 double inproduct(double *X, double *Y, int len) {
int i; double result=0.0;

for(i=0; i<len; i++)

result += X[i]*Y[i]; // 50% of cache misses
5 return result;

}

double sum(double *X, int len) {
int i; double result=0.0;

10 for(i=0; i<len; i++)

result += X[i]; // 50% of cache misses
return result;

}

15 double prodsum(double *X, double *Y, int len) {
double inp = inproduct (X,Y,len);

double sumX = sum (X,len);

double sumY = sum (Y,len);

return inp+sumX+sumY;

20 }

Figure 6: View on cache misses as provided by most
traditional tools for the second example.

over long reuse distances occur because the use is in one
iteration of the i-loop, and the reuse is in a later iteration.
Consequently, the tool indicates that the i-loop should be
tiled, by displaying a bar to the left of the loop source code.

Loop tiling is applied when the long-distance reuses occur
between different iterations of a single outer loop. When this
occurs, it means that in a single iteration of that loop, more
data is accessed than can fit in the cache. The principle idea
behind loop tiling is to process less data in one iteration of
the loop, so that data can be retained in the cache between
several iterations of the loop. Figure 5 shows the code after
tiling. Now, the inner j-loop executes at most 50 iterations
(see variable tilesize), and hence the amount of data ac-
cessed in the inner loop is limited. As a result, the reuses
between different iterations of the i-loop are shortened from
a distance of 217 to a distance between 27 and 29, see the
histograms in Figures 4 and 5. Note that some reuses have
increased in size: 1 in 50 reuses between iterations of the
j-loop in figure 4 have increased from 24–25 to 29–210 (see
dark bars in figure 5). This is because 1 in 50 reuses in
the original j-loop are now between iterations of the outer
jj-loop. The end result is the removal of all long-distance
reuses. As a result, the overall measured program speedup
is 5.7, see table 1.

2.2 Example 2: Inter-Procedural Reuses
The second example is shown in figure 6. The code in

function prodsum first calculates the inproduct of two arrays
by calling inproduct, after which the sum of all elements
in both arrays is computed by calling function sum. Most

existing tools would show, in one way or another, that half
of the misses occur on line 4, and the other half are caused
by the code on line 11.

In contrast, RDVIS shows two reference pairs, indicated
by arrows, that lead to long distance reuses, see figure 7.
By examining the highlighted code carefully, the program-
mer can find that uses occur in the call to inproduct, while
reuses occur in one of the two calls to sum. Here, the pro-
grammer must perform an interprocedural analysis of the
IEC. SLO, on the other hand, performs the interprocedu-
ral analysis for the programmer, and visualizes the result as
shown in figure 8. It clearly identifies that for half of the
long-distances reuses, inproduct must be fused with the first
call to sum, and for the other half inproduct must be fused
with the second call to sum.

3. BASIC DEFINITIONS
In this section, we review the basic terms and definitions

that are used to characterize reuses in a program.

Definition 1. A memory access ax is a single access to
memory, that accesses address x. A memory reference r is
the source code construct that leads to a memory instruction
at compile-time, which in turn generates memory accesses
at run-time. The reference that generates memory access ax

is denoted by ref(ax). The address accessed be a memory
access is denoted by addr(ax), i.e. addr(ax) = x.

Definition 2. A memory access trace T is a sequence of
memory accesses, indexed by a logical time. The difference
in time between consecutive accesses in a trace is 1. The
time of an access ax is denoted by T [ax].

Definition 3. A reuse pair 〈ax, a′x〉 is a pair of memory
accesses in a trace such that both accesses address the same
data, and there are no intervening accesses to that data.
The use of a reuse pair is the first access in the pair; the
reuse is the second access.

A reference pair (r1, r2) is a pair of memory references.
The reuse pairs associated with a reference pair (r1, r2) is
the set of reuse pairs for which the use is generated by r1 and
the reuse is generated by r2, and is denoted by reuses(r1, r2).

Definition 4. The Intermediately Executed Code (IEC)
of a reuse pair 〈ax, a′x〉 is the code executed between T [ax]
and T [a′x].

Definition 5. The reuse distance of a reuse pair from
a trace, is the number of unique memory addresses in that
trace between use and reuse.

Cache misses are identified by the reuses that have a dis-
tance larger than the cache size [6].

4. RDVIS: IEC ANALYSIS BY BASIC BLOCK
VECTOR CLUSTERING

In RDVIS, the Intermediately Executed Code is repre-
sented by a basic block vector:

Definition 6. The basic block vector of a reuse pair
〈ax, a′x〉, denoted by BBV(〈ax, a′x〉) is a vector ∈ {0, 1}n,
where n is the number of basic blocks in the program. When
a basic block is executed between use and reuse, the corre-
sponding vector element is 1, otherwise it is 0.



(a) IEC for first reference pair. (b) IEC for second reference pair.

Figure 7: Indication of intermediately executed code by RDVIS.

(a) Two required fusions of functions indicated by
arrows.

(b) The reuse distance histogram for the reuses opti-
mized by the two arrows in (a), for len=1000000.

Figure 8: Indication of locality optimizations by SLO.

The basic block vector of a reference pair (r1, r2),
denoted by BBV((r1, r2)) is a vector ∈ [0, 1]n. The value
of a vector element is the fraction of reuse pairs in reuses(r1, r2)
for which the basic block is executed between use and reuse.
More formally:

BBV ((r1, r2)) =

P
〈ax,a′

x〉∈reuses(r1,r2) BBV(〈ax, a′x〉)
#reuses(r1, r2)

In RDVIS, reference pairs are visually represented by ar-
rows drawn on top of the source code, e.g. figure 2. The tool
allows to highlight the code executed between use and reuse
for each individual arrow. Additionally, RDVIS clusters ar-
rows according to the similarity of their IEC.

The similarity (or rather dissimilarity) of the code exe-
cuted between two reference pairs is computed as the Man-
hattan distance of the corresponding basic block vectors in
the vector space [0, 1]n. When exactly the same code is exe-
cuted between the reuses, the distance is 0; when the code is
completely dissimilar, the distance is n. Based on the Man-
hattan distance, an agglomerative clustering is performed,
which proceeds as follows. First, each reference pair forms a
separate cluster. Then, iteratively, the two closest clusters

are merged into a single cluster. The basic block vector cor-
responding with the new cluster is the average of the two
basic block vectors that represent the merged clusters. The
clustering stops when all reference pairs are combined into
one large cluster. The distances between different subclus-
ters are shown graphically in the dendrogram, and the user
selects “interesting-looking” or “tight” subclusters. E.g. in
figure 2(c), the user selected two very tight subclusters: the
light gray and the dark gray subcluster. Since similar code
is executed between use and reuse in a tight subcluster, it is
likely that the long-distance reference pairs can be optimized
by the same refactoring, e.g. see figure 2(d).

5. SLO: IEC ANALYSIS BY INTERPROCE-
DURAL CONTROL FLOW INSPECTION

SLO aims to improve on RDVIS by analyzing the IEC
further and automatically pinpoint the refactorings that are
necessary to improve temporal locality, even in an interpro-
cedural context. To make this possible, SLO tracks the loop
headers (i.e. the basic blocks that control whether a loop
body is executed [1]) and the functions that are executed
between use and reuse, using the following framework.



5.1 Step 1: Determining the Least Common
Ancestor Function

inproduct
Use Site Reuse Site

sum

main

prodsum
Least Common Ancestor Frame

Figure 9: The Least Common Ancestor Frame
(LCAF) of a reuse, indicated in the activation tree.
The activation tree represents a given time during
the execution of the code in figure 6, assuming that
the use occurs inside function inproduct, and the
reuse occurs inside sum.

SLO proceeds by first determining the function in which
the refactoring must be applied. In a second step, the exact
refactoring on which part of that function’s code is com-
puted. The refactoring must be applied in the “smallest”
function in which both the use and the reuse can be seen.
This is formalized by the following definitions, and illus-
trated in figure 9.

Definition 7. The activation tree [1] of a running pro-
gram is a tree with a node for every function call at run-time
and edges pointing from callers to callees.

The use site of a reuse pair 〈ax, a′x〉 is the node cor-
responding to the function invocation in which access ax

occurs. The reuse site is the node where access a′x occurs.
The Least Common Ancestor Frame (LCAF) of a

reuse pair 〈ax, a′x〉 is the least common ancestor in the acti-
vation tree of the use site and the reuse site of 〈ax, a′x〉. The
Least Common Ancestor Function is the function that
corresponds to the least common ancestor frame.

The LCAF is the function where some refactoring is needed
to bring use and reuse closer together. Once the LCAF has
been determined, the loop structure of the LCAF is exam-
ined, and the basic blocks in the LCAF executed between
use and reuse.

Definition 8. The basic block in the LCAF, in which the
use occurred (directly or indirectly through a function call),
is called the Use Basic Block (UseBB) of 〈ax,a′

x〉; the
basic block that contains the reuse is called the Reuse Ba-
sic Block (ReuseBB) of 〈ax,a′

x〉.

5.2 Step 2: Analyzing the Control Flow
Structure in the Least Common Ancestor
Function

The key to the analysis is finding the loops that “carry”
the reuses. These loops are found by determining the Non-
nested Use and Non-nested Reuse Basic Blocks, as defined
below (illustrated in figure 10):

Definition 9. The Nested Loop Forest of a function is
a graph, where each node represents a basic block in the
function, and there are edges from a loop header to each
basic block directly controlled by that loop header.

The Outermost Executed Loop Header (OELH) of
a basic block BB with respect to a given reuse pair
〈ax, a′x〉 is the unique ancestor of BB in the nested loop
forest that has been executed between use ax and reuse a′x,
but does not have ancestors itself that are executed between
use and reuse.

The Non-nested Use Basic Block (NNUBB) of 〈ax,a′
x〉

is the OELH of the use basic block of 〈ax, a′x〉. The Non-
nested Reuse Basic Block (NNRBB) of 〈ax,a′

x〉 is the
OELH of the reuse basic block of 〈ax, a′x〉.

5.3 Step 3: Determining the Required
Refactoring

Refactorings are determined by analyzing the NNUBB
and NNRBB. We subdivide in 3 different patterns:

Pattern 1: Reuse occurs between iterations of a single
loop. This occurs when NNUBB = NNRBB, and they are
loop headers. Consequently, a single loop carries the reuses.
This pattern arises when the loop traverses a “data struc-
ture”1 in every iteration of the loop. The distance of reuses
across iterations can be made smaller by ensuring that only
a small part of the data structure is traversed in any given
iteration. As such, reuses of data elements between consecu-
tive iterations are separated by only a small amount of data,
instead of the complete data structure.

A number of transformations have been proposed to in-
crease temporal locality in this way, e.g. loop tiling [26, 30],
data shackling [18], time skewing [31], loop chunking [3],
data tiling [16] and sparse tiling [27]. We call these transfor-
mations tiling-like optimizations. An extreme case of such
a tiling-like optimization is loop permutation [22], where in-
ner and outer loops are swapped, so that the long-distance
accesses in different iterations of the outer loop become
short-distance accesses between iterations of the inner loop.

Examples of occurrences of this pattern are indicated by
bars with the word “TILE L...” in figures 3, 4 and 5.

Pattern 2: Use is in one loop nest, the reuse in an-
other. When NNUBB and NNRBB are different loop head-
ers, reuses occur between different loops. The code tra-
verses a data structure in the loop indicated by the NNUBB.
The data structure is retraversed in the NNRBB-loop. The
reuses can be brought closer together by only doing a sin-
gle traversal, performing computations from both loops at
the same time. This kind of optimization is known as loop
fusion. We call the required transformation a fusion-like
optimization. Examples of this pattern are indicated by bars
with the word “FUSE L...” in figure 3.

Pattern 3: NNUBB and NNRBB are not both loop head-
ers. When one of NNUBB or NNRBB are not loop head-
ers, it means that either the use or the reuse is not inside
a loop in the LCAF. It indicates that data is accessed in
one basic block (possibly indirectly through a function call),
and the other access may or may not be in a loop. So,
the reused data structure is traversed twice by two separate
code pieces. In this case, bringing use and reuse closer to-
gether requires that the computations done in the NNUBB
and in the NNRBB are “fused” so that the data structure is

1the data structure could be as small a single scalar variable
or as large as all the data in the program
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(a) The Control Flow Graph.
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(b) The Nested Loop Forest.

Figure 10: The Control Flow Graph and Nested Loop Forest of function ex in figure 1. The basic blocks
executed between use and reuse are indicated by double ellipses. For this particular reuse pair, the Use Basic
Block is 6 and the Reuse Basic Block is 9.

traversed only once for performing both computations. As
such, improving the temporal locality for this code pattern
also requires a fusion-like optimization. An example of this
pattern is indicated by bars with the word “FUSE B...” in
figure 8.

Taking into account the three possible patterns of code
leading to poor temporal locality, it is clear that the required
transformations can be categorized in two classes:

tiling-like optimizations are required when reuses occur
between iterations of a single loop. I.e. the loop mostly
or completely traverses the same data structure in each
of its iterations.

fusion-like optimizations are needed when two separate
pieces of code, be it loops, function calls or plain non-
loop code, access the same data.

6. IMPLEMENTATION AND CASE
STUDIES

6.1 Implementation
We extended the GCC compiler to instrument all mem-

ory accesses, basic block transitions and function entry and
exits. Additionally, the exact source code locations of the
tokens constituting a memory reference and a basic block
are recorded to file during compilation. At run-time, the in-
strumented program tracks all reuses and the intermediately
executed code. At the end of execution, the instrumented
program writes the recorded reuse information to disk.

This information is then read in by either RDVIS or SLO
to visualize the major long-distance reuse patterns and asso-
ciated intermediately executed code. RDVIS and the adapted
GCC compiler are publicly available at http://www.elis.

ugent.be/~kbeyls/rdvis. We plan to make SLO publicly
available in the near future at http://www.elis.ugent.be/
~kbeyls/slo.

6.2 Case studies
Using RDVIS and SLO, we examined and optimized a few

programs from the SPEC2000 benchmark.
183.equake simulates earth quakes. The main optimiza-

tion indicated was to tile an outer loop. We applied a special
tiling akin the one presented in [27]. 179.art simulates a neu-
ral network to recognize objects in an image, together with
a confidence level of how sure it is the object is truly recog-
nized. For this program, the tool shows that a middle loop

Speedup
Pentium4 Itanium Alpha Average
(512KB) (2MB) (8MB)

Art 4.11 1.54 1.16 2.39
Equake 1.10 2.93 3.09 2.30

Table 2: Speedups on different platforms of Art and
Equake after temporal locality optimizations per-
formed based on suggestions made by RDVIS and
SLO. The cache sizes of the largest cache level are
indicated between parentheses for each platform.

needs to be tiled and a number of loop nests in that loop
need to be fused.

For most of the indicated refactorings, in both 183.equake
and 179.art, naively applying them would have violated data
dependences, resulting in incorrect output. Therefore, we
applied a series of enabling transformations first to make
the indicated refactorings legal. For both 183.equake and
179.art, some array data needed to be duplicated to elim-
inate false dependencies. Furthermore, a number of “en-
abling” loop transformations were required to make the in-
dicated transformations legal. For 179.art, the tiling of the
middle loop could not be performed even after trying to find
enabling transformation, because of true data dependences.

As such, the output and visualization by the tools pre-
sented in this paper directed us towards finding a sequence
of optimizations to improve data locality [10]. After the
transformations, the programs run more than 2 times faster
on average on a number of different platforms, see table 2.

As an illustration of the power of the SLO tool in re-
vealing the causes of poor temporal locality, we show two
more examples from SPEC2000. Figure 11 depicts the ma-
jor long-distance reuses for the chess program Crafty. This
shows that the major refactoring required is tiling the loop
that iterates over the list of possible moves of chess pieces
for a given board position. Figure 12 shows the results for
VPR, a place-and-route tool for FPGAs. From the figure it
follows that most long-distance reuses occur between differ-
ent invocations of try swap, which optimizes placement by
swapping two CLB’s.

7. CONCLUSION
We have presented two tools that, to the furthest of our

knowledge, are the first tools that identify refactorings which
improve temporal data locality for arbitrary programs. Us-

http://www.elis.ugent.be/~kbeyls/rdvis
http://www.elis.ugent.be/~kbeyls/rdvis
http://www.elis.ugent.be/~kbeyls/slo
http://www.elis.ugent.be/~kbeyls/slo


Figure 11: 186.crafty: SLO views. The main (red) optimization requires tiling the loop that iterates over all
possible moves on the chess-board in a given board position.

Figure 12: 175.vpr: SLO views. VPR is a place-and-router for FPGA design. It shows the most important
(red) refactoring in the source code for the placement phase in FPGA place-and-route.

ing an extended GCC compiler, programs are instrumented
and profiled. After profiling, an interactive visualizer allows
to browse the most important refactorings revealed by the
analyses. For both tools, the key observation towards find-
ing suitable optimizations is that the code executed between
a use and a reuse is responsible for generating a long-distance
reuse. Eliminating the long-distance reuse requires access-
ing less data between the reuses, by refactoring the inter-
mediately executed code (IEC). RDVIS helps by clustering
the patterns of intermediately executed code, and directing
programmers into examining the most important clusters
of IEC. SLO additionally analyzes the interprocedural and
loop structure of the IEC to automatically pinpoint the re-
quired refactoring, in the least common ancestor function
(LCAF).

Our analysis reveals that all temporal data locality opti-
mizations can be categorized as either tiling-like or fusion-
like. A tiling-like optimization is required when data is reac-
cessed in subsequent iterations of the same loop. A fusion-
like optimization is needed when a data structure is tra-
versed twice by two different parts of the source code. Us-
ing the tools, we quickly pinpointed the underlying cause
of poor temporal locality in a number of complex programs
from the SPEC2000 benchmark. After taking into account
data dependences, 2 SPEC2000 programs were optimized,
resulting in an average speedup of 2.3 on a number of dif-
ferent platforms.
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