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ABSTRACT

The execution of a typical program is not random, but follows certain patterns. In previous work

several techniques have been proposed to extract and exploit these patterns for various purposes.

Most of these studies were limited to single-threaded sequential programs. In this work, we an-

alyze and extract the phase behavior of parallel programs and their network traffic on distibuted

shared-memory systems using traffic-sensitive BBVs. The analysis of this phase behavior is di-

vided into two parts, namely thread-level as well as program-level phase behavior. One of the

main goals is to use this framework for latency reduction of network architectures with novel

reconfigurable optical interconnection networks.
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1 Introduction

Most computer programs are not random, but consist of a number of repeating execution
patterns, meaning that the execution of a given program can be divided into a number of
key behavioral patterns, which are repeated during the execution of the program.

In the past, several techniques have been proposed to capture and exploit these repeating
patterns. One popular technique is called Simpoint[Sher02], in which a number of program
phases are extracted, by correlating execution behavior with executed program code. The
execution of a program is divided into a number of fixed-length instruction intervals and
for each instruction interval a Basic Block Vector (BBV) is collected. Each BBV basically is a
histogram of how many times each basic block has been executed during some instruction
interval. Once the BBVs are collected for a given program execution, they are grouped into
a number clusters where each cluster contains similar BBVs. The resulting clusters – also
called program phases – then reflect the different execution patterns that were captured
during that execution of the given program.

In [Pere06], Perelman et al. extended the idea behind Simpoint for parallel programs.
Using sampled BBVs, they first collect BBV information for each thread separately. Subse-
quentially, they cluster all BBVs of all threads of the parallel program to extract a number
of phases, which can be shared across multiple threads. The local phases of the different
threads are then synchronized to each other.
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