
Distributed on-line analysis of discrete event systems:
a survey of some recent results

René Boel
SYSTeMS Research Group, Universiteit Gent

Technologiepark-Zwĳnaarde 914, B-9052 Gent, Belgium
rene.boel@ugent.be

Abstract
On-line supervisory control of large discrete event systems is difficult due to the exponentially

growing size of the state space to be enumerated in a naive analysis. This paper surveys several
attempts to reduce the computational complexity, as investigated in some recent papers by the
SYSTeMS group of Ghent University. Compositionality and distributed analysis, combined
with forward and backward generation of unfoldings of the set of feasible trajectories are
proposed here as tools for resolving this problem.

Keywords – Petri nets, observers, fault detection, backward search, occurrence nets

1 Motivation and introduction

Recent economical and technological evolutions allow the design of plants with very high
performance. The behaviour of these large man-made plants is often very complicated and
subject to unexpected malfunctions, because the system typically requires the co-operation
and co-ordination of many interacting components. Supervisory control of these plants requires
accurate estimates of the current mode of operation of the plant as a whole. In particular a
supervisory agent needs to know whether some components have failed, whether assigned tasks
have been executed completely, etc. in order to take the correct decisions. For basic concepts
on supervisory control, the reader can consult the book by Cassandras and Lafortune [1] or the
lecture notes of Wonham [2].

This paper presents a survey of some recent work by the author and his doctoral students,
addressing these problems. We assume that the plant evolves over time satisfying constraints
expressed by an abstract, discrete event dynamical systems model. Different modelling paradigms
may be used for different components, but in this paper all components are represented by Petri
nets. In order to allow model based design of fault detectors, state estimators and supervisors,
the model must include a description of those faults that must be reported to the supervisor
(we assume that if a fault occurs it is permanent). The occurrence of a fault corresponds to
the execution of a particular event in the Petri net model such that the behaviour of the plant
following the fault is undesirable in some sense. Faults, and many other events that modify the
state of the plant, are unobservable to the supervisory agent However some other events are
observable, and we assume in fact that the occurrence of the observable events is always reported
correctly to the local control (or fault detection) agent. In other words later observable effects

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55780616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the fault allow a supervisory agent to detect that the fault happened at least for a class of
reasonable models, to be considered below.

The global plant is represented in this paper by a composition of Petri net components that
interact with each other by exchanging tokens via boundary places that connect two components
to each other. The main difficulty is the explosion of the size of the global state space of the
plant - essentially equal to the Cartesian product of the local state spaces of each component -
and the ensuing inability to use enumeration in order to achieve either off-line or on-line analysis.
The purpose of the analysis, as treated in this paper, is to synthesize supervisors that achieve
certain global specifications, by observing some events generated by the plant, and performing
on-line calculations using these observations in order to disable certain future events that might
lead to unsafe conditions..

In order to make the supervisor robust against communication failures, and in order to reduce
the computational complexity of the off-line and of the on-line work, the approach proposed
in this paper attempts to do as much of the calculations in a local supervisory agent, using as
little communication exchange between agents as possible. The compositional model allows us
to assume that each region has a local supervisor agent that knows the local Petri net model,
that observes perfectly and without delay all the local observable events, and that from time to
time can exchange messages with agents supervising neighbouring components. Using all the
information available at time θ the local supervisor must issue local decisions so that certain
global specifications on the plant behaviour are met. In order to achieve this each agents must
use its knowledge available at time θ in order to estimate the set of possible values of the global
state Xθ at time θ and issue decisions that are maintaining the plant in a safe state for every
sequence of events that is legal in at least one of the possible current states. This paper surveys
some work by the SYSTeMS group of Ghent University, mainly by G. Jiroveanu, showing that
such distributed diagnosers can be synthesized efficiently [3, 4, 5] under reasonable conditions.

2 Local Observer design

This section considers one single component of a plant in isolation and shows that forward
unfolding allows the design of on-line state observers. We assume that the reader is familiar
with the Petri net notation N = (P, T , F ) where: P denotes the finite set of places, T the finite
set transitions, with marking m(p),∀p ∈ P representing the state of the plant. Given a PN
system 〈N ,M0〉 the set of all legal traces in 〈N ,M0〉 is denoted by LN (M0) while the set of
reachable markings is denoted by RN (M0) =

{
M | ∃τ ∈ LN (M0) s.t. M0

τ−→M
}

. We assume
throughout this paper that the Petri net is such that all m(p) remain bounded for all allowable
traces of events. The occurrence of events t belonging to the subset To of observable events is
reported immediately and without error to the local control agent. Other events in Tu = T \To are
unobservable, and are completely silent. The occurrence of unobservable events is not reported
in any way to any agent.

An observer combines at time θ the knowledge about the plant model - the constraints encoded
in the Petri net - with the observed (and ordered) trace of observable events that have occurred
up to time θ. Thus the observer agent knows at time θ the complete model of the plant (the
model of all components, and of their interaction) as well as the order of the occurrence of all
the observable events that were executed up to time θ. If the set of initial states X0 of the plant
is known, then the observer calculates, at the time θ1 of the occurrence of the first observable
event t1 ∈ To, the set R(θ1, t1) of all allowable traces (that is: all the traces that satisfy all the

2



constraints expressed by the model, and that start in an initial marking in X0), consisting of
unobservable events only, except for the last event which must be t1. The set of markings that
are generated by the traces in R(θ1, t1) bring the plant into a state belonging to a new set X1 of
markings. The recursive operation of the observer is now obvious. Each time a new observation
tn is received at time θn the observer agent combines the new information expressed by the fact
that an unobservable trace, satisfying all the constraints expressed by the model and starting in a
state belonging to Xn−1 has ended with te observable event tn. This way the observer calculates
a new set R(θn, tn) of possible traces, and a new set Xn of possible states. At each time the
observer enumerates all the states that the plant can be in, given the model constraints and the
past observations.

Given the sets R(θn, tn) one can decide whether a fault must have occurred, by checking if
all traces in R(θn, tn) contain a fault event. A fault may have occurred if some of the traces
in R(θn, tn) contain a fault, but one must also take into account that after time θn and prior
to the next occurrence of an observable event, some more faults may occur. In order to check
whether this is possible, the observer must also calculate all the legal traces R(θn, tn). This set
contains all traces satisfying all the model constraints and starting in a state belonging to Xn
and executing only unobservable events.

The observer design is conceptually easy to understand provided one assumes that a set X0 of
possible initial states is known. Prior to the execution at time θ1 of the first observed event t1
the plant can be in any state that can be reached from any possible initial state by executing
only unobservable events. At the time of the first observed event all those traces of unobservable
events that lead to a state where the observed event t1 is not enabled are discarded. This
recursive updating provides a dynamic model of an observer automaton. The state space of the
observer automaton consists of sets of possible states of the plant; the transitions of the observer
automaton are the observable events of the plant, since the state of the observer automaton
is updated each time an observable event occurs. Corresponding to the states of the observer
automaton, one can also list the set of traces in the original plant that lead to these states. This
observer automaton was introduced by Cieslak et al. [6]. In [7] it has been shown that the size of
these observers is exponential in the size of the original Petri net model. Moreover in [7] it has
been shown that faults can be detected within a finite delay (after the occurrence of at most a
bounded number of events) provided that the model does not allow unobservable cycles of events
to be executed (because these cycles could be executed an unbounded number of times without
ever generating an observable effect that would trigger an alarm in the fault detector).

The preceding paragraph shows that the size of the state space of the observer automaton
suffers from combinatorial explosion for large plants consisting of many interacting components.
One reason is that many events can be executed concurrently, and the set of traces enumerates all
possible orderings of these concurrent events. However this ordering is not relevant for calculating
the set of possible future legal traces. Unfoldings of a Petri net are Petri nets that generate the
same set 〈N ,M0〉 = LN (M0) of legal traces, but such that the unfolding does not contain any
cycles (all the cycles in the original net have been "unfolded", which means that the unfolding
can be infinite), and every place in the unfolding has only one input transition (which means
that whenever a place in the original net has k input transitions, then the unfolding contains k
copies of that place). One can show that there also exist finite prefixes of an unfolding, with the
same initial marking as the original net, that generate the same set of traces that are possible
in the original marked Petri net. If one applies this to the Petri net that contains only those
transitions of N = (P, T , F ) that are unobservable, and that can be executed from the known

3



initial marking, then one obtains an efficient representation of an observer automaton, avoiding
the enumeration of all possible orderings of concurrent events [3, 5].

3 Distributed Fault Detection for a plant with two components

Analysing large plants requires that the model be decomposed into several interacting Petri net
components. The extension of the above results to a compositional model is easy provided one
can observe all the interactions between the components. In our model this would mean that
components interact only via observable exchange of tokens: if component a sends a token to
a place in component b then component b knows exactly where and when this tokens arrived.
In practice this interaction is often not observable. This implies that the initial marking of a
component is not known, since a component may not know whether it has received a token from
a neighbouring component or not. Thus the forward unfolding method of the previous paragraph
is not feasible.

This problem can be solved by using backward search for valid traces explaining a local
observation. Consider the time θ when the first observable event to1 is reported to the observer
agent of component a. This observation requires that at some time prior to θ all the input places
of to1 contained at least one token, which in turn implies that at least one unobservable input
transition of each of these places has been executed prior to θ, in turn requiring that the input
places of these transitions were marked prior to θ. Continuing this backward search for traces
that satisfy the Petri net model constraints, and that explain the first observed event to1, one
eventually reaches a place that is marked by the known initial conditions of the component, or
one reaches a boundary place where one can state as a condition that some other component
should have sent a token to this place prior to θ.

Unfortunately this backward search suffers from the same problem as the classical observer
automaton. All concurrent event orderings will be enumerated. Moreover care must be taken
whenever cycles exist in the network, and these cycles contain places and transitions that belong
to different components. In [3] it is shown that one can define a backward Petri net model for
each component, and that a minimal backward unfolding (a bounded net without cycles, and no
places with more than one output transition) can be defined explaining the observation in an
efficient way, without repeating equivalent orderings of concurrent event executions.

Whenever the backward search ends with a requirement that a token has been received from a
neighbouring component, the set of possible traces may be too large. Indeed it is possible that
the neighbouring agent knows that it could never have transmitted this token. Therefore the
local fault detection agent may declare faults possible in cases where the global fault detection
agent (that would receive all observable events of all components, and that would know the
model of each component) would know that this fault cannot have occurred. The local diagnosis
agent is conservative: it provides an overdiagnosis.

In order to avoid this overdiagnosis each agent may exchange messages with its neighbour.
Suppose that agent a thinks a fault is possible, but knows that the occurrence of this fault is only
possible if a token was sent by component b prior to time θn. Then agent a can send a message
to agent b asking if component b could have sent this token prior to θn. If agent b responds that
this token cannot have been sent to component a then agent a must remove all the traces that
use this token from its set of possible explanations of the observed event. If agent b responds
that this token transfer has indeed been possible at some time prior to θn, then agent a accepts
the fault as possible. The response of agent b may also be that a token may have been sent by

4



component b provided that agent a had sent a token prior to some earlier time θ′. Both a and
b may have to recalculate their set of feasible traces after a preliminary exchange of messages.
This may in turn require agent b to ask if other tokens may have been sent by component a
to component b, and so on. Under reasonable conditions (no unobservable cycles covering two
components) one can show that this round of exchanging messages between two components
ends after a finite number of messages. At the end of the communication round (assuming that
the state of both component a and component b have not changed in the mean time) both fault
detection agents know whether a fault may have occurred in the component they supervise if
and only if a global fault detection agent would also know this. Thus the local fault diagnosis is
as good as the global fault diagnosis immediately after each communication round. In between
communication rounds the local fault diagnosis is a pessimistic overdiagosis that may declare
some faults possible that would be excluded by a global diagnoser.

4 Extensions and open problems

Many extensions of the porblem are possible (and have only partially been solved). Finding
good protocols for exchanging a finite number of messages between k > 2 agents controlling k
components is quite difficult. Finding conditions guaranteeing that a fault will indeed be detected
eventually is also very hard (since this detectability condition depends on the global model, and
can not be checked locally). An important extension is the use of temporal information. Very
often faults correspond to excessive delay of an event (say a valve receives an instruction "open"
but gets stuck). In [3] some methods have been developed for including in the model used by
the fault detector information on the normal delay between the enabling of an event and the
completion of the corresponding transition . Traces may in this case become illegal because
the delay in detecting some observable event is too long. This additional information allows for
much more accurate fault detectors, but makes the generation of minimal unfoldings much more
complicated. Finally assigning probabilities to free choices in the plant evolution may lead to
practically much more useful fault detectors, but requires a global calculation in general. Finding
special structures where the probabilistic calculations can be done locally would be a major
improvement.

5 Bibliography

[1] C. Cassandras and S. Lafortune: Introduction to Discrete Event Systems, Kluwer Academic
Publishers, 1999.

[2] W. M. Wonham: Supervisory Control of Discrete Event Systems, available on-line at:
http://www.control.utoronto.ca/cgi-bin/dldes.cgi

[3] G. Jiroveanu: Fault Diagnosis for Large Petri Nets, Ph.D. thesis, Universiteit gent, 2006
[4] G. Jiroveanu and R. Boel: Distributed diagnosis for Petri net models with unobservable

interactions via common places, Proceedings of CDC/ECC2005
[5] G. Jiroveanu and R. Boel: Distributed diagnosis of large interacting systems, Proceedings

of the 16th International Workshop on Diagnosis (DX05), Monterey, Ca., 2005
[6] R. Cieslak, C. Desclaux, A. Fawaz and P. Varaiya: Supervisory control of discrete-event

processes with partial observations, IEEE-T-AC-33, no. 3, pp.249-260, 1988
[7] M. Sampath, R. Sengupta, S. Lafortune, S. Sinnamohadeen and D. Teneketzis: Diangosability

of discrete event systems, IEEE-T-AC-40, no. 9, pp.1555-1575, 1995

5


	Motivation and introduction
	Local Observer design
	Distributed Fault Detection for a plant with two components
	Extensions and open problems
	Bibliography

