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Abstract - A practical method for calculating eddy current 
losses in transformer windings is reported.  The method improves 
the classical loss presentation by introducing a loss coefficient, 
called eddy current factor kc.  In this paper, eddy current losses in 
round conductors are discussed.  A graphical approximation of kc 
as a function of wire diameter, frequency, layer number, copper 
packing factors in the direction parallel and perpendicular to the 
layer is provided.  The graphs are obtained by analytical 
expressions compared with FEM simulations.  To unify the 
approach for different cases, a reference diameter, apparent and 
equivalent frequency are defined.  A few short examples for 
applying the method in transformer design are given.  The 
method is applicable for a variety of transformers with different 
frequencies, wire diameters and conductor fittings.  

The proposed method is verified by designing several 
transformers.  As an example, a 2.5 kW transformer is fully 
described.  The experiments show good matching with the 
calculations. 
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I. INTRODUCTION 

Eddy current effects are quite important in inductors and 
transformers for power electronics.  Eddy current losses in 
round wires, including skin and proximity effects in 
transformers are discussed by Dowell [1] and many new papers 
[2], [3], related to some extent to Dowell’s interpretation and 
results.  The 2-D analytical approximations are mainly 
focussed on uniform transverse fields (proximity losses) and 
also on the own field of a wire (skin-effect losses) [4], [5], [6].  
The limitation of the conversion of round wires into 
rectangular ones is improved in [7], [8].  The optimal design 
and minimization of losses in Litz wire windings are provided 
in [9].  Full numerical methods can need up to 1 million of 
elements easily [10].  This affects calculation time and 
accuracy.   

A conclusion can be made that on one hand, a lot of the 
design approaches are a compromise of the accuracy in eddy 
current losses estimation, and on the other hand, the calculation 
time and complicity.   

In this paper a time-saving high accuracy method for eddy 
current loss calculation in transformer windings is introduced.  
The proposed approach is applicable for transformers in wide 
range of designs using round wires.  

II. PROPOSED WIDE FREQUENCY APPROACH FOR CALCULATING 
EDDY CURRENT LOSSES IN TRANSFORMER WINDINGS 

First, low frequency (LF) approximation is considered [11].  
The LF approximation is the starting point of the proposed 
approach.   

The LF approximation is applicable when the eddy currents, 
induced in the winding do not considerably change the applied 
field inside the conductor.  The LF approximation is valid up 

δ6.1≤d [11], (d is the wire diameter and δ is the penetration 

depth 
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The major part of the eddy current losses in LF 

approximation for round wires can be explained by the 
presence of a transverse magnetic field, which acts like an 
induction heating to the wire.  To express the eddy current 
losses )(, tP eddycu , the following equation can be used: 
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where: 

d is the practical diameter of the copper wire of the 
considered winding; 
B is the induction, assumed perpendicular to the wire axis;  
lw  is the wire length of the winding  

 
The equation (1) is quite general and applicable even for the 

cases with more complicated field distribution, e.g. for non-
sinusoidal waveforms, [3].   

 
A. Eddy current losses factor kc  

To extend the validity of (1) for larger diameters, and a wide 
frequency range, the loss factor kc is introduced. The factor kc 
represents the ratio between the eddy current losses compared 



to the losses in the ohmic resistance of the winding of the 
magnetic component.   

Using the above introduced loss factor kc, the eddy current 
losses are given by the following equation  

 
 ( ) caceddy kIRP 2

0=  (2) 
 
where: 

kc is the loss factor, depends on the operating frequency f, 
the wire diameter d and the distance between the 
conductors, presented by the parameter η  and the distance 
between the layers presented by the parameter λ ; 
Iac is the AC current component; 

0R  is the ohmic resistance of the winding. 
 
The copper fill factor in the direction of the layer η can be 

defined as )/ wdn=η , where d is the wire diameter; n in the 
number of turns in a layer; w is the winding width. 

The copper fill factor in the direction perpendicular to the 
layer λ can be defined as hdmE /λ = , where h is the window 
height (for mE see below).  

To allow an easy use of kc, we provide two sets of graphs 
shown in Fig.1 and Fig.2, giving the additional coefficient ktf. 
For the transformers the value of the coefficient kc is:  

 
 tfc kmk E

2≈  (3) 
 
where the value of ktf  is found using Fig.1 and Fig.2.  
 
The parameter mE (equivalent number of layers) is defined as 

the number of layers going from no field to the maximum field.   
For p parallel wires a number of wires is present in the same 

layer, which will become an equivalent number of wires in a 
layer: mmE = . 

For Litz wire one cannot count exactly the number of 
individual wires in a layer. We distribute the equivalent turns 
in both directions and then we have:  pmmE = , where  p is 
the number of paralleled strands.   

For interleaved windings in transformers (and no parallel 
wires) KmmE /= , where K is the field symmetry factor [11].  
This presentation is also necessary for so called ‘half layers’. 

It is not recommended to use partially filled layers in 
transformer designs. If anyhow partially filled layers are used, 
in the proposed method, the wires should be equally spread.  
The effect of the partially filled layers is reduced at high values 
of mE. 

The graphs are obtained by approximating the exact solution 
for eddy current losses for different cases, found by using 
software package MathCad [11].  

 
 
 
 

 
 
Fig. 1 Transformer cases, typical transformer factor ktf for d=0.5mm, η=0.9, 

ρ=23×10-9 and λ=0.5, 1) dotted line: half layer, mE=0.5; 2) solid line: single layer, 
mE=1; 3) dashed: two layers, mE=2; 4) dash-dot: three or more layers, mE>2. 

LF – low frequency approximation. 
 

 

 
 
Fig. 2 Transformer cases, typical transformer factor ktf for d=0.5mm, η=0.7, 

ρ=23×10-9 and λ=0.5, 1) dotted line: half layer, mE=0.5; 2) solid line: single layer, 
mE=1; 3) dashed: two layers, mE=2; 4) dash-dot: three or more layers, mE>2. 

LF – low frequency approximation. 
 
To unify the use of the graphs, we introduce a reference 

diameter, an apparent frequency and an equivalent frequency. 
 



B. Apparent frequency calculation 
In (2), the apparent frequency should be used. 
1. In general, one has to sum the contribution of each 

current harmonic in order to calculate losses.  In the presented 
method, for sinusoidal currents no corrections have to be made 
and the apparent frequency fap is the real one:  

 ffap =  (4) 

2. For a symmetrical triangular current waveform, in the 
low frequency approximation we obtain the following apparent 
frequency fap: 

 fffap 10.132
≈

π
=  (5) 

3. At high frequency, the losses tend to increase with the 
root of frequency for a given current. In that case, the 
contribution of harmonics in the current is low and one can use 
the rms value of the current instead of summing over all 
harmonics.  For a symmetrical triangular current waveform, 
this results in an apparent frequency fap: 

 ffap 025.1≈  (6) 

 
C. Reference wire diameter 

The choice of 0.5mm as a reference wire diameter is done in 
order to use a typical wire diameter for power electronics.  The 
frequency, for which the penetration depth is equal to the 
reference diameter d=δ, is 20kHz.  The limit of the ‘low 
frequency (LF) approximation’ for the reference diameter 
d=0.5mm is 50kHz, thus LF can be applied below 50kHz for 
that wire diameter.  These values are easy to remember.  The 
diameters of wires in adjacent layers are taken equal and in a 
square fitting.  This is the worst-case design, as a hexagonal 
fitting usually reduces the losses.  

 
D. Equivalent frequency calculation 

To use the provided graphs (Fig.1, Fig.2) for any frequency, 
wire diameter and conductor resistivity, the equivalent 
frequency of the considered case should be first found:  
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where: 

fap is the apparent frequency; 
d is the wire diameter in [mm]; 
ρc is the conductor resistivity in [Ωm]. 
 

For fast calculation, the waveforms and resistivity could be 
neglected, but the diameter effect has still to be taken into 
account by the following simplified expression: 
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III. SHORT EXAMPLES OF APPLYING THE PROPOSED APPROACH 

The graphs shown in Fig.1 and Fig.2 concern a design 
example with a typical wire diameter of 0.5mm and the usual 
frequency range for power electronics: 10kHz to 10MHz.  For 
more than two layers (mE>2), the result is almost independent 
of the number of layers.  The usual values of η in transformers 
are between 0.7 (typical for thin wires and Litz wire) and 0.9 
(typical for d>0.5mm).  For other values of η, a linear 
interpolation between Fig.1 and Fig.2 can be done. The 
additional error due to that interpolation is below 2%. 

A few short examples of transformer designs show the use 
of the graphs in Fig.1 and Fig.2. 

 

1) A single layer winding of a transformer uses a wire 
diameter of 0.9 mm and an outer diameter of 1mm, the 
frequency is 30kHz, the copper resistivity is ρ =23×10-9 Ω m.  

We have 9.0mm1mm/9.0η == , so we use Fig.1.  We have 
to keep the same diameter/penetration depth ratio, i.e. to find 
the equivalent frequency feq = 30kHz×(0.9/0.5)2 = 97.2 kHz. 

Reading from Fig.1 gives ktf=0.473.  It is a single layer 
transformer, so 1=Em  and we obtain kc=ktf=0.473.  

 

2) The same wire diameters and resistivity as in 1), but a 
three-layer transformer winding, using a three times smaller 
winding width, the same turn number. 

We use the same values 9.0η =  and feq=97.2 kHz. It is a 
three-layer transformer, so 3=Em .  For 3 layers and more, 

we read ktf =0.575 from Fig.1. Then we have 17.532 == tfc kk .  
 

3) The same wire diameters and resistivity as above , but 
a half layer transformer design (the considered single layer 
secondary is sandwiched between two primary windings). 

Using the same values 9.0η =  and feq=97.2 kHz, we read 
from Fig.1 ktf =0.166. It is a half-layer transformer, so 

5.0=Em  and we have 0415.05.0 2 == tfc kk .  This value is 
much lower than the cases 1) and 2) above.  The reason is that 
in this design case, the transverse field is zero and only local 
fields are present.  In practical realizations, the half layer 
solutions indeed perform well, but a non-careful winding (e.g. 
non-equal winding width of the layers) generates parasitic 
transverse fields that increase the losses considerably. 

 

4) A two layer transformer winding of 0.5 mm copper 
diameter at 50 kHz and packing factor in the direction of the 
layer η=0.8, copper resistivity ρc=23×10-9 Ωm. 

We have the same diameter as the graphs, so the equivalent 
frequency is equal to the applied frequency.  We obtain 

170.09.0, =tfk  from Fig.1 and 104.07.0, =tfk  form Fig.2.  To 

find ktf,0.8  (for η=0.8), we take the average of the two values 
137.02/)170.0104.0(8.0, =+=tfk . Then we find 

549.02 8.0,
2 == tfc kk .  

 



IV. PRACTICAL IMPLEMENTATION OF THE PROPOSED APPROACH 

A.  Realized Transformer Design  
A welding transformer is designed using the “fast design 

approach”, proposed in [12].  The method, presented here, is 
applied for calculating the eddy current losses of the primary 
and secondary windings of that transformer. 

The transformer contains 2 identical coils connected in 
parallel.   Each coil contains a primary winding with number of 
turns N=20. Each primary winding includes two windings in 
parallel, Fig.3.  Secondary winding of each coil (5 turns, 2 
conductors in parallel) is sandwiched between the two primary 
windings of each coil.  

The arrangement of the windings is shown in Fig.3. 
The realized transformer is pictured in Fig.4. 
The specifications of the designed transformer are:  
Upri=300V; Pout=2.5kW (continuous power) 
Core: U 80/40/25; Primary Winding: N=20, d=1.18 [mm]; 

Secondary Winding: N=5, d=2 [mm] 
 
 
 
 
 

 
 

Fig. 3.  Designed welding transformer - winding arrangement. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Realized welding transformer, UU core, N87 ferrite. 

 

B.  Winding Loss Calculations 
Primary Winding -A single layer winding, wire diameter of 

1.18 mm, the frequency is 60kHz, the copper resistivity is 
ρ=21×10-9 Ω m.  

We have 908.0mm26/12018.1/η =××== mmwpNd . 
We have to keep the same diameter/penetration depth ratio, i.e. 
we have to find the equivalent frequency. We use (7) 
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5.0
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=eqf  (9) 

We read ktf,0.9=2.15 from Fig. 1 for η=0.9.  The actual value 
η2=0.908 is very close to η=0.9.  It is a single layer 
transformer, so 1=Em  and we obtain kc=ktf=2.15.  

Then, using (2) we obtain the eddy current losses of the 
primary winding.  The total losses in the primary winding are 
the sum of ohmic and eddy current losses. 

Secondary Winding – A half layer transformer design 
5.0=Em  (the considered single layer secondary is sandwiched 

between two primaries), 2 wires in parallel, wire diameter of 2 
mm, the frequency is 60kHz, the copper resistivity is ρ 
=21×10-9 Ω m.  

We have 769.0mm26/252/η =××== mmwpNd . The 
equivalent frequency is 

  MHz051.1
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2kHz60
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=eqf  (10) 

We find ktf,0.9=6 from Fig. 1 for η=0.9 and ktf,0.7=4.7 form 
Fig. 2 for η=0.7.  The actual value of η for the secondary is 
η2=0.769.  Using the found two values and interpolating for 
η2=0.769, we obtain ktf ≈5.149. It is a half layer transformer, so 
mE=0.5 and we obtain 287.15.0 2 == tfc kk .  

The calculated results for the total losses of both primary 
and secondary windings are tabulated in Table 1. 

  
TABLE 1 CALCULATED RESULTS FOR THE EXPERIMENTAL TRANSFORMER 

 ktf kc Pohm [W] Peddy [W] Pcu,i [W] 
primary 2.15 2.15 1.455 3.129 4.584 

secondary 5.149 1.287 2.059 2.65 4.709 
 
The total losses in primary and secondary windings are: 

293.9709.4584.42,1, =+=+= cucucu PPP  (11) 

C.  Measured Winding Losses 
We measured the winding losses Pmeas of the realized 

transformer (short circuit test, primary current 10A) and the 
results are shown in Table 2, together with the calculated 
results Ptotal,cu. 

TABLE 2  MEASURED WINDING LOSSES PMEAS UNDER SHORT CIRCUIT TEST, 10 A 

Measured results Calculated results 
Pmeas [W] Pcu [W] Pend [W] Ptotal,cu [W] 

9.31 9.293 0.11 9.403 
 
Remark: In Table 2 Pend are the losses due to the ends of the 

secondary winding. 

The calculated values for the total copper losses 
Ptotal=9.403W are very close to the measured values 
Pmeas=9.31W. Nevertheless, we expect a general accuracy of 
3% on eddy current losses. The tolerances on dimensions of 
the wires and other dimensions can also affect the practical 
accuracy as well.   

Primary winding Secondary winding



V. CONCLUSION 

The advantages of the proposed approach are the fast and 
straight calculation combined with good accuracy and wide 
application.  The method is applicable for a wide variety of 
transformers with different frequencies, wire diameters and 
conductor arrangements.  

The proposed method is used in designing several welding 
transformers.  The target power of the transformers is 2.5 kW. 
The experiments show good matching with the calculations. 
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