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Abstract— As the performance of digital signal processors
has increased rapidly during the last decade, there is a grow-
ing interest to replace the analog controllers in low power
switching converters by more complicated and flexible digital
control algorithms. Compared to high power converters, the
control loop bandwidths for converters in the lower power
range are generally much higher. Because of this, the dynamic
properties of the uniformly-sampled pulse-width modulators used
in low power applications become an important restriction to
the maximum achievable bandwidth of control loops. Though
frequency- and Laplace-domain models for uniformly-sampled
pulse-width modulators are very valuable as they improve the
general perception of the dynamic behavior of these modulators,
the direct discrete design of the digital compensator requires a z-
domain model for the combination modulator and converter. For
this purpose a new exact small-signal z-domain model is derived.
In accordance with the zero-order-hold equivalent commonly
used for ‘regular’ digital control systems, this z-domain model
gives rise to the development of a uniformly-sampled pulse-width-
modulator equivalent of the converter. This z-domain model is
characterized by its capability to quantify the different dynamics
of the converter for different modulators, its ease of use and its
ability to predict the values of the control variables at the true
sampling instants of the real system.

I. I NTRODUCTION

For reasons of price, control circuits for low power switch-
ing power supplies (<3 kW) are almost always implemented
using analog circuits. As the price/performance ratio of digital
signal processors has decreased rapidly during the last decade,
the interest for digital control of switching power supplies in
the low power range has grown [1], [2]. When applying digital
control to a switching power supply, the different switches
in the supply are often controlled by a digital or uniformly-
sampled pulse-width modulator. Consequently, the dynamics
of a digitally controlled switching power supply are influenced
by two nonlinear effects: quantization effects and modulation
effects. As the effects of quantization in digital control of
switching power supplies have been addressed before [3],
[4], this study focuses on modulation effects. Frequency-
and Laplace-domain models of the modulators [5] provide
insight in the fundamental dynamic behavior of uniformly-
sampled pulse-width modulators. However, the design of
the compensator must be performed in the Laplace-domain.
This Laplace transfer function is afterwards translated into
a discrete equivalent by approximation methods such as the
trapezoidal-rule, pole-zero mapping, etc. To avoid this indirect
design method for the discrete compensator, a z-domain model
for the combination converter-modulator is required. Discrete-
time models have already been reported [6] but their use in
control is limited because of the presence of matrix expo-
nentials and other highly nonlinear vector functions. Though
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Fig. 1. A general uniformly-sampled pulse-width modulator

approximations of this bilinear discrete-time model such as [7]
provide a good solution to this problem, the usability of these
models is further restrained because they are only derived for
an end-of-on-time modulator and because they describe the
behavior of the control variable values at the beginning of the
switching cycle instead of at the sampling instants of the real
digital control system. After all, the sampling instants in a
real digital control system can be positioned anywhere in the
switching cycle.

To overcome these problems a new exact small-signal z-
domain model is derived based on the Laplace-domain analysis
presented in [5]. In accordance with the zero-order-hold equiv-
alent commonly used for ‘regular’ digital control systems, this
z-domain model gives rise to the development of a uniformly-
sampled pulse-width-modulator equivalent of the converter.
This z-domain model is characterized by its capability to
quantify the different dynamics of the converter for different
modulators, its ease of use as this approach uses only the
modified z-transform rather than complex functions, and its
ability to predict the values of the control variables at the true
sampling instants of the real system. The method is validated
and demonstrated on a digitally controlled buck converter
by comparing the samples predicted by the model with the
simulated waveforms retrieved from a Simulink model.

II. U NIFORMLY-SAMPLED PULSE-WIDTH MODULATORS

The pulse-width modulators embedded in modern digital
signal processors (e.g. TMS320C2XX of Texas Instruments,
ADSP2199X of Analog Devices, DSP568XX of Motorola,
etc.) operate all in a similar fashion. If we disregard quan-
tization effects, a model for the uniformly-sampled pulse-
width modulator is shown in Fig. 1. The inputu(t), a
continuous function of time, is sampled with a frequencyωs

synchronously to the pulse-width modulation (Fig. 1). For
the derivation of the z-domain model only modulators with
a switching frequency equal to the sampling frequencyωs

(single-update-mode) are considered. The sampled inputus(t)
is sent to a zero-order-hold circuit (ZOH). Finally, the PWM
waveform is generated by comparing the output of the ZOH
uH(t) to the value of the carrier waveformvc(t), a triangular
waveform. Depending on the shape of the carrier waveform
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Fig. 2. The single-update-mode sawtooth-carrier modulators. (a): end-of-on-
time, (b): begin-of-on-time

vc(t) different types of uniformly-sampled pulse-width mod-
ulators can be obtained. In commercial digital controllers two
possibilities are commonly offered: the carrier waveform is ei-
ther a sawtooth-carrier Fig. 2 or an isosceles-triangular-carrier
Fig. 3. When the carriervc is a sawtooth carrier the commonly
available types are the end-of-on-time modulator Fig. 2(a) and
the begin-of-on-time modulator Fig. 2(b). For modulators with
an isosceles-triangular-carrier waveform, two modulators can
be identified: the symmetric-on-time modulator Fig. 3(a) and
the symmetric-off-time modulator Fig. 3(b).

III. Z-DOMAIN ANALYSIS

If we assume that the response of the output of the converter
q(t) to a change in the output of the uniformly-sampled pulse-
width modulator can be described by the Laplace transfer
function P (s)e−sτp , the schematic of the control loop can be
represented as in Fig. 4. The controlled output of the converter
q(t) is converted by a measurement with transfer function
H(s)e−sτm into the measured outputqm(t). The latter is sam-
pled by the analog-to-digital converter of the microcontroller;
the output of the sampler isq∗m(t). Comparing this measured
value to its desired valueq∗w(t) yields the sampled errore∗(t).
The digital compensator with pulse-transfer functionG(z)
derives the control outputc∗(t) from this error. To account
for the duration of the control calculations (calculations for
the output ofG(z)) in the processor, a calculation delayτd is
introduced. The delayed control signalu∗(t) is the sampled
input of the modulator. The latter transforms the sampled input
u∗(t) into the switching functiony(t), a continuous function of
time. If the pulse-width modulator can be modelled by a pulse-
to-continuous transfer functionG∗

PWM (s) describing in the
Laplace domain the change of the modulator outputy(t) as a
function of the sampled inputu∗(t), the model of Fig. 4 can be
simplified to that of Fig. 5. Note that this pulse-to-continuous
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Fig. 3. The single-update-mode triangular-carrier modulators. (a): symmetric-
on-time, (b): symmetric-off-time

transfer function for the modulatorG∗
PWM (s) is in accordance

with the model commonly employed for a regular control
system with zero-order-hold (G∗

ZOH (s)=(1− e−sTs)/s).
If a hypothetical sampler with sampling periodωs is intro-

duced on the output of the converterq(t), the sampled output
q∗(t) is obtained. By using the z-transform, the sampled output
q∗(t) can be expressed as a function of the commanded output
q∗w(t):

Q(z)
Qw(z)

=
G(z)Z

{
e−s(τd+τp)G∗

PWM (s)P (s)
}

1 + G(z)Z
{
e−s(τd+τp+τm)G∗

PWM (s)P (s)H(s)
} ,

(1)
with Q(z) and Qw(z) the z-transforms ofq∗(t) and q∗w(t),
respectively. Equation (1) clearly shows that the problem of
calculating the sampled output of a converter with a digital
control loop can be reduced to the problem of finding the
z-transform of

Gtot(z) = Z
{
e−sT∆G∗

PWM (s)R(s)
}

(2)

or the calculation of the z-transform of the characteristic
system as depicted in Fig. 6. Before the z-transform for
the characteristic system can be calculated, the pulse-to-
continuous transfer function of a uniformly-sampled pulse-
width modulator must be derived.

The derivation of the pulse-to-continuous transfer function
G∗

PWM (s) of the digital pulse-width modulator is based upon
the small-signal Laplace-domain analysis presented in [5].
This Laplace-domain analysis uses the waveforms of the
general single-update-mode modulator (Fig. 7). This modu-
lator has a triangular waveshape as carrier waveformvc(t)
determined by the periodTc and the ratioα. The ratio α
is the duration of the falling edge of the triangle relative
to the periodTc = Ts (Fig. 7). Choosingα equal to0, 1/2
and1 allows to obtain the waveforms for the end-of-on-time
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Fig. 7. The key waveforms for a general single-update-mode modulator

modulator, the symmetric-on-time modulator and the begin-
of-on-time modulator respectively. Hence, three out of four
different single-update-mode modulators can be analyzed in a
unified way.

The input of the modulatoru(t) is separated into a steady-
state partU (a constant) and a small excursion to this steady-

stateû(t), or
u(t) = U + û(t). (3)

The resulting output of the modulatory(t) can also be sepa-
rated into a steady-state portionY (t) (the response toU ) and
a small excursion to the steady-stateŷ(t), or

y(t) = Y (t) + ŷ(t). (4)

By using the Laplace-domain analysis of [5], the small-signal
output ŷ(t) of the modulator can be expressed as a function
of the sampled version̂u∗(t) of the small-signal input̂u(t) of
the modulator (see [5])

Ŷ (s) = Ts

(
αe−sT0 + (1− α)e−s(Ts−T1)

)
Û∗(s), (5)

with T0, T1 and α defined in Fig. 7. In accordance with the
analysis used for a zero-order-hold in a ‘regular’ digital control
system [8], a pulse-to-continuous Laplace transfer function can
be derived from the equation above

G∗
PWM (s) =

Ŷ (s)

Û∗(s)
= Ts

(
αe−sT0 + (1− α)e−s(Ts−T1)

)
.

(6)
If (6) is substituted in (2), the z-domain model for the
characteristic system can be calculated.

A. The UPWM-equivalent for the end-of-on-time modulator

As an example the z-domain model of the characteristic
system is derived for an end-of-on-time modulator. For this
modulator the following applies:α = 0 and T1 = (1 − D)Ts,
with D (= U ) the average duty-ratio. With these parameter
values, substitution of (6) in (2) yields

Gtot(z) = TsZ
{

e−sT∆R(s)e−sDTs

}
= TsZ

{
e−s(ζ+D)TsR(s)

}
, (7)
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TABLE I

THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEM: (a) THE END-OF-ON-TIME MODULATOR , (b) THE BEGIN-OF-ON-TIME MODULATOR

(a)

case condition Gtot(z)

1 0<ζ <(1−D) TsR(z, 1−D−ζ)

2 (1−D)<ζ <1 Tsz
−1R(z, 2−D−ζ)

(b)

case condition Gtot(z)

1 0<ζ <D TsR(z,D−ζ)

2 D<ζ <1 Tsz
−1R(z, 1+D−ζ)

TABLE II

THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEM: (a) THE SYMMETRIC-ON-TIME MODULATOR , (b) THE SYMMETRIC-OFF-TIME MODULATOR

(a)

case condition Gtot(z)

1 0<ζ < 1
2 (1−D) Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ R
(
z, 1

2 (1−D)− ζ
)]

2 1
2 (1−D)<ζ < 1

2 (1+D) Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ z−1R
(
z, 1 + 1

2 (1−D)− ζ
)]

3 1
2 (1+D)<ζ <1 Ts

2 z−1
[
R

(
z, 1 + 1

2 (1 + D)− ζ
)

+ R
(
z, 1 + 1

2 (1−D)− ζ
)]

(b)

case condition Gtot(z)

1 0<ζ < D
2

Ts

2

[
R

(
z, 1

2 (2−D)− ζ
)

+ R
(
z, 1

2D − ζ
)]

2 D
2 <ζ < 1

2 (2−D) Ts

2

[
R

(
z, 1

2 (2−D)− ζ
)

+ z−1R
(
z, 1 + 1

2D − ζ
)]

3 1
2 (2−D)<ζ <1 Ts

2 z−1
[
R

(
z, 1 + 1

2 (2−D)− ζ
)

+ R
(
z, 1 + 1

2D − ζ
)]

with ζTs =T∆. As in most cases the total delayT∆ is smaller
than the sampling periodTs, ζ is comprised between0 and1
and two cases can be distinguishedGtot(z) = TsZ

{
e−s(ζ+D)TsR(s)

}
for ζ+D<1

Gtot(z) = Tsz
−1Z

{
e−s(ζ+D−1)TsR(s)

}
for ζ+D>1

.

(8)
If the modified z-transform ofR(s) is defined as

R(z,m) = Zm{R(s)} = Z
{

e−s(1−m)TsR(s)
}

, (9)

equation (8) can be transformed intoGtot(z) = TsR(z, 1−D − ζ) for ζ+D<1

Gtot(z) = Tsz
−1R(z, 2−D − ζ) for ζ+D>1

. (10)

This model Gtot(z) is the uniformly-sampled pulse-width-
modulator equivalent or UPWM-equivalent for an end-of-
on-time modulator of the transfer functionR(s)e−sT∆ . A
summary of the z-domain models of the characteristic system
for an end-of-on-time modulator with their corresponding
conditions is shown in Table I(a).

The UPWM-equivalent for the begin-of-on-time modulator,
the other sawtooth-carrier modulator, can be derived in a
similar way. Though the calculation is omitted, the results are
tabulated in Table I(b). Note that the z-domain models for the

begin-of-on-time modulator can be deduced from the z-domain
models for the end-of-on-time modulator by substituting the
average duty ratioD in the latter with the complement of the
average duty-ratio1−D, and vice-versa (compare Tables I(a)
and I(b)).

B. The UPWM-equivalent for the symmetric-on-time modula-
tor

As another example the UPWM-equivalent of the char-
acteristic system for a triangular-carrier modulator, the
symmetric-on-time modulator, is derived. The waveforms of
the symmetric-on-time modulator can be obtained by choosing
α=1/2 in Fig. 7. For this modulator the parametersT0 and
T1 are defined asT0 =T1 = Ts

2 (1−D). By using T∆ =ζTs

the UPWM-equivalent of the characteristic system can be
expressed as

Gtot(z) =
Ts

2
Z

{(
e−s(ζ+ 1−D

2 )Ts

+ e−s(ζ+ 1+D
2 )Ts

)
R(s)

}
. (11)

Depending on whether the different delays in (11) are larger
than the sampling periodTs or not, and taking into account
thatζ is almost always smaller than1, three different cases can
be distinghuised. In the first case, defined by0<ζ < 1

2 (1−D),
equation (11) can be rewritten by using the definition for the
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modified z-transform of (9)

Gtot(z) =
Ts

2
[
R

(
z, 1

2 (1 + D)− ζ
)

+ R
(
z, 1

2 (1−D)− ζ
)]

. (12)

If the following applies 1
2 (1−D)<ζ < 1

2 (1+D), the second
transportation delay in (11) becomes larger than the sampling
period Ts. Consequently, the UPWM-equivalent of the char-
acteristic system becomes

Gtot(z) =
Ts

2
[
R

(
z, 1

2 (1 + D)− ζ
)

+ z−1R
(
z, 1 + 1

2 (1−D)− ζ
)]

. (13)

In the last case wereζ is comprised between12 (1+D) and
1, both delays in (11) are larger than the sampling period.
Hence, the UPWM-equivalent of the characteristic system can
be expressed as

Gtot(z) =
Ts

2
z−1

[
R

(
z, 1 + 1

2 (1 + D)− ζ
)

+ R
(
z, 1 + 1

2 (1−D)− ζ
)]

. (14)

The z-domain models of the characteristic system for the
symmetric-on-time modulator (12)–(14) with their correspond-
ing conditions are recapitulated in Table II(a).

Similar calculations are performed to derive the z-domain
models of the characteristic system for a symmetric-off-time
modulator. Though the derivation of these models is not explic-
itly repeated, the results are summarized in Table II(b). Similar
to sawtooth-carrier modulators, the UPWM-equivalents for the
symmetric-off-time modulator can be obtained by replacing
D with its complement1−D in the UPWM-equivalents for
the symmetric-on-time modulator, and vice-versa (compare
Tables II(a) and II(b)).

IV. M ODEL VALIDATION

To show the validity of the approach, the discrete UPWM-
equivalent is deduced for the buck converter of Fig. 8 with a
first order output filter. If the input voltageVin of the converter
is a constant, the Laplace transfer function of its output can
be written as (see also Figs. 4 and 5)

P (s) =
Vin

1 + sL/R
=

Vin

1 + sτ
. (15)

Under the assumption that the transfer function of the mea-
surement is given by

H(s)e−sτm = 1, (16)
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Fig. 9. Block diagram for the digitally controlled buck converter

the pulse-transfer function of the closed loop system can be
written as

Q(z)
Qw(z)

=
Vo(z)

Vo,w(z)

=
G(z)Z

{
e−s(τd+τp)G∗

PWM (s)P (s)
}

1 + G(z)Z
{
e−s(τd+τp)G∗

PWM (s)P (s)
} . (17)

To calculate this transfer function, the delayτd+τp and the
type of modulator used must be known.

Assume that during normal operation the average duty ratio
D of the converter is between0.5 and1, and that the following
condition applies for the delay

τd + τp = ζTs ≥ 0.35Ts, (18)

than the type of modulator and its corresponding UPWM-
equivalent can be chosen.

If the different cases for the z-domain models in Tables I
and II are compared, it is clear that “case 1” guarantees
the fastest dynamics of the system. After all, in the other
cases an extra pole appears in the origin, indicating an extra
delay of a sampling period. Hence, the fastest response of
the closed loop system is achievable with a modulator for
which the “case 1” condition can be met. Keeping in mind
the required duty-ratio range and condition (18), the begin-
of-on-time modulator (Table I(b), case 1) is the best choice.
If only triangular-carrier modulators are considered (Table II),
the “case 1” condition can never be met. Hence, for these type
of modulators the best solution is to look for a modulator for
which the “case 2” condition is fulfilled. Consequently, the
fastest usable triangular-carrier modulator is the symmetric-
on-time modulator (Table II(a), case 2). For both the begin-
of-on-time modulator and the symmetric-on-time modulator
the discrete UPWM-equivalent of the buck converter with a
first order filter is derived and simulated in this section.

A. The begin-of-on-time modulator

To calculate the UPWM-equivalent of the buck converter of
Fig. 8, an expression for the modified pulse transfer function
of the first order system (15) is required:

P (z,m) = Z
{

P (s)e−s(1−m)Ts

}
= Vin

1
τ

e−
mTs

τ
1

z − e−
Ts
τ

. (19)

Hence, the discrete UPWM-equivalent of the buck converter
with a first order filter and with a begin-of-on-time modulator
becomes (Table I(b), case 1)

Gtot(z) = Vin
Ts

τ
e−

(D−ζ)Ts
τ

1

z − e−
Ts
τ

. (20)
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voltage (v∗o,w(t)): the simulated model (vo(t), sim.) and the z-domain model
(v∗o(t), z-mod.)

With this pulse transfer function and with (16) the control
circuit of Fig. 5 can be simplified to the block diagram
represented in Fig. 9.

If the steady-state error of the control loop of Fig. 9 must be
zero, the controllerG(z) requires a pole atz=1. Furthermore,
a zero of the controller can be used to compensate for the pole
of the process (20) atz=e−

Ts
τ . The resulting controller is

G(z) = K
z − e−

Ts
τ

z − 1
. (21)

The root locus of the closed loop system for a variable gainK
is depicted in Fig. 10. Apart from the hidden mode atz=e−

Ts
τ

there remains only one closed loop pole that can be placed in
the origin by choosing the gain of the controller as follows

K =
1

Vin

Ts

τ
e(Do−ζ) Ts

τ , (22)

with Do the design value for the average duty ratio. Conse-
quently the closed-loop system will behave as a delay of one
sampling period or, the response is a dead-beat response. If the
average duty-ratioD differs from its design valueDo, the loop
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Fig. 13. The closed-loop response of the buck converter with a first order
filter and a symmetric-on-time modulator to a step in the commanded output
voltage (v∗o,w(t)): the simulated model (vo(t), sim.) and the z-domain model
(v∗o(t), z-mod.)

gain will increase or decrease (20). As a result the position
of the closed-loop pole in the origin will alter depending on
the average value of the duty ratio. Nevertheless, with a duty-
ratio range of 0.5 up to 1 and with a design value for the
average duty-ratio ofDo =0.75 this effect only results in a
slight change in closed-loop response.

To verify the theoretical results the closed loop step response
of the buck converter is simulated with Simulink. The simu-
lated waveforms are compared to the results obtained with the
z-domain model. For the simulation the following parameters
were used 

Vin = 400 V, Ts = 20 µs,

L = 1 mH, R = 32 Ω,

ζ = 0.375, Do = 0.75.

(23)

The result is depicted in Fig. 11 (D=Do). A comparison
between the waveforms obtained with the Simulink model
(the solid lines) and the step response of the z-domain model
(crosses) shows that the z-domain model accurately predicts
the closed-loop behavior of the digitally controlled buck
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converter. Moreover, the step response is clearly a dead-beat
response.

B. The symmetric-on-time modulator

If a triangular-carrier modulator is to be used, the best
choice is the symmetric-on-time modulator. The discrete
UPWM-equivalent for the buck converter with a first order
filter and a symmetric-on-time modulator can be calculated
with (19) and Table II(a), case 2 (keeping in mind condition
(18)):

Gtot = Vin
Ts

2τ
e−( 1

2 (1+D)−ζ)Ts
τ · z + e−(1−D) Ts

τ

z
(
z − e−

Ts
τ

) . (24)

This pulse transfer function does not only contain the same
pole as the system of (20), but it also contains an extra pole
in the origin and an extra zero. A dead-beat controller for this
system is of the following form

G(z) = K
z

(
z − e−

Ts
τ

)
(z − 1)(z − a)

, (25)

with
a = −e−(1−Do) Ts

τ . (26)

However, due to important changes in the position of the
system zero atz = −e−(1−D) Ts

τ caused by the various values
the average value of the duty ratioD may adopt (24), the
closed-loop behavior may change drastically. To avoid this, it
is better to choose a somewhat slower controller with a settling
time of 2 sampling periods. To achieve this the closed-loop
system should have a double pole in the origin, or the root
locus should have a breakpoint in the origin. A root locus has
a breakpoint in the origin if (forD=Do)

d
dz

(G(z)Gtot(z))
z=0

= 0. (27)

This equation yields a value fora

a = − e−(1−Do) Ts
τ

1 + e−(1−Do) Ts
τ

. (28)

The root locus of the closed loop poles with this value fora
is depicted in Fig. 12. Besides the hidden mode atz=e−

Ts
τ ,

the two closed-loop poles of the system coincide in the origin
for

K =
(1 + a)

Vin
· 2τ

Ts
e(

1
2 (1+Do)−ζ)Ts

τ . (29)

The simulation is performed forζ =0.5, while the other
parameters are chosen according to (23). The closed-loop
step response for the buck converter is shown in Fig. 13
(for D=Do). The comparison between the simulation results
(solid line) and the results predicted by the z-domain model

reveals the good agreement. As indicated above the settling
time for a step response is equal to 2 sampling periods.

V. CONCLUSION

As the performance of digital signal processors has in-
creased rapidly during the last decade, there is a growing inter-
est to replace the analog controllers in low power switching
converters by more complicated and flexible digital control
algorithms. Compared to high power converters, the control
loop bandwidths for converters in the lower power range are
generally much higher. Because of this, the dynamic properties
of the uniformly-sampled pulse-width modulators used in low
power applications become an important restriction to the
maximum achievable bandwidth of control loops. Though
frequency- and Laplace-domain models for uniformly-sampled
pulse-width modulators are very valuable as they improve the
general perception of the dynamic behavior of these modu-
lators, the direct discrete design of the digital compensator
requires a z-domain model for the combination modulator
and converter. For this purpose a new exact small-signal z-
domain model is derived. In accordance with the zero-order-
hold equivalent commonly used for ‘regular’ digital control
systems, this z-domain model gives rise to the development
of a uniformly-sampled pulse-width-modulator equivalent of
the converter. This z-domain model is characterized by its
capability to quantify the different dynamics of the converter
for different modulators, its ease of use and its ability to
predict the values of the control variables at the true sampling
instants of the real system. The obtained z-domain models are
compared with the results retrieved from simulation models of
a buck converter with a first order filter.
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