2004 35th Annual IEEE Power Electronics Specialists Conference

Aachen, Germany, 2004

Small-Signal z-Domain Analysis of Digitally Controlled Converters

David M. Van de Sype Koen De Gusseg Alex P. Van den Bossche, and Jan A. Melkebeek
Electrical Energy Laboratory
Department of Electrical Energy, Systems and Automation, Ghent University
St-Pietersnieuwstraat 41, B-9000 Gent, Belgium
*Email: VandeSype@Lambda.UGent.be

Abstract—As the performance of digital signal processors
has increased rapidly during the last decade, there is a grow-
ing interest to replace the analog controllers in low power
switching converters by more complicated and flexible digital
control algorithms. Compared to high power converters, the
control loop bandwidths for converters in the lower power
range are generally much higher. Because of this, the dynamic
properties of the uniformly-sampled pulse-width modulators used
in low power applications become an important restriction to
the maximum achievable bandwidth of control loops. Though
frequency- and Laplace-domain models for uniformly-sampled
pulse-width modulators are very valuable as they improve the
general perception of the dynamic behavior of these modulators,
the direct discrete design of the digital compensator requires a z-
domain model for the combination modulator and converter. For

this purpose a new exact small-signal z-domain model is derived.

In accordance with the zero-order-hold equivalent commonly
used for ‘regular’ digital control systems, this z-domain model

gives rise to the development of a uniformly-sampled pulse-width-
modulator equivalent of the converter. This z-domain model is
characterized by its capability to quantify the different dynamics

of the converter for different modulators, its ease of use and its
ability to predict the values of the control variables at the true

sampling instants of the real system.
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Fig. 1. A general uniformly-sampled pulse-width modulator

approximations of this bilinear discrete-time model such as [7]
provide a good solution to this problem, the usability of these
models is further restrained because they are only derived for
an end-of-on-time modulator and because they describe the
behavior of the control variable values at the beginning of the
switching cycle instead of at the sampling instants of the real
digital control system. After all, the sampling instants in a
real digital control system can be positioned anywhere in the
switching cycle.

To overcome these problems a new exact small-signal z-
domain model is derived based on the Laplace-domain analysis
presented in [5]. In accordance with the zero-order-hold equiv-
alent commonly used for ‘regular’ digital control systems, this
z-domain model gives rise to the development of a uniformly-

sampled pulse-width-modulator equivalent of the converter.

. - .. This z-domain model is characterized by its capability to
For reasons of price, control circuits for low power switch-

. : . qguantify the different dynamics of the converter for different
ing power supplies< 3 kW) are almost always implemented . :
. S . . .~ modulators, its ease of use as this approach uses only the
using analog circuits. As the price/performance ratio of digital _ ... . .
dified z-transform rather than complex functions, and its

signal processors has decreased rapidly during the last dec(g\n%O
gnal p pidly g a ﬁity to predict the values of the control variables at the true
ampling instants of the real system. The method is validated

the interest for digital control of switching power supplies in
the low power range has grown [1], [2]. Wher_1 applying C.“g'tajmd demonstrated on a digitally controlled buck converter
control to a switching power supply, the different swﬂcheg comparing the samples predicted by the model with the
in the supply are often controlled by a digital or uniformly-.y paring pies p y he
. simulated waveforms retrieved from a Simulink model.
sampled pulse-width modulator. Consequently, the dynamics
of a digitally controlled switching power supply are ianuencedII
by two nonlinear effects: quantization effects and modulation
effects. As the effects of quantization in digital control of The pulse-width modulators embedded in modern digital
switching power supplies have been addressed before [@fjnal processors (e.g. TMS320C2XX of Texas Instruments,
[4], this study focuses on modulation effects. FrequenciDSP2199X of Analog Devices, DSP568XX of Motorola,
and Laplace-domain models of the modulators [5] providetc.) operate all in a similar fashion. If we disregard quan-
insight in the fundamental dynamic behavior of uniformlytization effects, a model for the uniformly-sampled pulse-
sampled pulse-width modulators. However, the design width modulator is shown in Fig. 1. The inpui(¢), a
the compensator must be performed in the Laplace-domaiontinuous function of time, is sampled with a frequengy
This Laplace transfer function is afterwards translated ingynchronously to the pulse-width modulation (Fig. 1). For
a discrete equivalent by approximation methods such as the derivation of the z-domain model only modulators with
trapezoidal-rule, pole-zero mapping, etc. To avoid this indireat switching frequency equal to the sampling frequengy
design method for the discrete compensator, a z-domain mo@hgle-update-mode) are considered. The sampled inguf
for the combination converter-modulator is required. Discretes sent to a zero-order-hold circuit (ZOH). Finally, the PWM
time models have already been reported [6] but their use waveform is generated by comparing the output of the ZOH
control is limited because of the presence of matrix expas(t) to the value of the carrier waveform.(¢), a triangular
nentials and other highly nonlinear vector functions. Thoughaveform. Depending on the shape of the carrier waveform

I. INTRODUCTION

UNIFORMLY-SAMPLED PULSE-WIDTH MODULATORS
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Fig. 2. The single-update-mode sawtooth-carrier modulators. (a): end-of-étig. 3. The single-update-mode triangular-carrier modulators. (a): symmetric-
time, (b): begin-of-on-time on-time, (b): symmetric-off-time

v.(t) different types of uniformly-sampled pulse-width moditransfer function for the modulat@¥},,, (s) is in accordance

ulators can be obtained. In commercial digital controllers tweith the model commonly employed for a regular control

possibilities are commonly offered: the carrier waveform is esystem with zero-order-hold3(;,;; (s)=(1 — e~57%)/s).

ther a sawtooth-carrier Fig. 2 or an isosceles-triangular-carrienf a hypothetical sampler with sampling periag is intro-

Fig. 3. When the carrier, is a sawtooth carrier the commonlyduced on the output of the convertgt), the sampled output

available types are the end-of-on-time modulator Fig. 2(a) agtl(t) is obtained. By using the z-transform, the sampled output

the begin-of-on-time modulator Fig. 2(b). For modulators with*(¢) can be expressed as a function of the commanded output

an isosceles-triangular-carrier waveform, two modulators caj)(¢):

be identified: the symmetric-on-time modulator Fig. 3(a) and

the symmetric-off-time modulator Fig. 3(b). Q(z) _ G(2)2{e ") Gy (5)P(s) }

Qu(z) 1+ G(z>2{e-s<fd+w+fm)G*pWM<s>P<s>H<s>§ ’)
1

If we assume that the response of the output of the converY‘@Fh Q(2) and Qu(2) the z-transforms of"(1) and q;, (1),

: . ) respectively. Equation (1) clearly shows that the problem of
g() to a change in the output of the uniformly-sampled pulse Iculating the sampled output of a converter with a digital

. . a
}ﬁ'gé?i Ofgi‘;;i‘?;:iﬂ ebSeChdee ;(;Tikée:f t??(/a EhoentrL;lalfgs :;insi&rmtrol loop can be reduced to the problem of finding the
represented as in Fig. 4. The controlled output of the converFéFranSform of
q(t) is gonyerted by a measurement with transfer function Grot(2) = Z{e T2 Ghyyns (s)R(s)} )
H(s)e *™ into the measured outpyt,(¢). The latter is sam-

pled by the analog-to-digital converter of the microcontrollegr the calculation of the z-transform of the characteristic
the output of the sampler ig;, (¢). Comparing this measuredsystem as depicted in Fig. 6. Before the z-transform for
value to its desired valug (¢) yields the sampled errer(t). the characteristic system can be calculated, the pulse-to-
The digital compensator with pulse-transfer functi6ffz) continuous transfer function of a uniformly-sampled pulse-
derives the control output*(¢) from this error. To account width modulator must be derived.

for the duration of the control calculations (calculations for The derivation of the pulse-to-continuous transfer function
the output ofG(z)) in the processor, a calculation delayis Hwas () of the digital pulse-width modulator is based upon
introduced. The delayed control signat(t) is the sampled the small-signal Laplace-domain analysis presented in [5].
input of the modulator. The latter transforms the sampled inplhis Laplace-domain analysis uses the waveforms of the
u*(t) into the switching functioy(¢), a continuous function of general single-update-mode modulator (Fig. 7). This modu-
time. If the pulse-width modulator can be modelled by a puls&tor has a triangular waveshape as carrier wavefogfn)
to-continuous transfer functio},;,,,(s) describing in the determined by the period, and the ratioa. The ratio «
Laplace domain the change of the modulator outgs} as a is the duration of the falling edge of the triangle relative
function of the sampled input*(¢), the model of Fig. 4 can be to the periodT,. = T (Fig. 7). Choosinga equal to0, 1/2
simplified to that of Fig. 5. Note that this pulse-to-continuouand 1 allows to obtain the waveforms for the end-of-on-time

IIl. z-DOMAIN ANALYSIS
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Fig. 4. A model for the control loop of a digitally controlled converter with the pulse-width modulator modelled by a pulse-to-continuous transfer function
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Fig. 5. A model for the control loop of a digitally controlled converter with the pulse-width modulator modelled by a pulse-to-continuous transfer function

i a(t a*(t ~
wit)) et Gown(s) ¥ R(s) ﬂ/L_(L statew(t), or
T u(t) = U + (). @)
Fig. 6. The characteristic system consisting of a linear system, a transpoffiye resulting output of the modulat@(t) can also be sepa-
tion delay and the uniformly sampled pulse-width modulator rated into a steady-state portidf"(t) (the response &) and
a small excursion to the steady-stgie), or

y(t) =Y () +y(t). (4)

By using the Laplace-domain analysis of [5], the small-signal
outputy(t) of the modulator can be expressed as a function
of the sampled versiofi*(¢) of the small-signal inputi(t) of

1
/ the modulator (see [5])
U ~ ~
Y(s) =T, (ae_ST" +(1- a)e_s(TS_Tl)) U*(s), (5)
0
1 with Ty, 77 and « defined in Fig. 7. In accordance with the
analysis used for a zero-order-hold in a ‘regular’ digital control
B system [8], a pulse-to-continuous Laplace transfer function can
0 be derived from the equation above
1 ~
Y
b (8) = = () =T (ae_STo +(1- a)e_S(TS_T1)> .
U*(s)

(6)
If (6) is substituted in (2), the z-domain model for the
characteristic system can be calculated.

—1

A. The UPWM-equivalent for the end-of-on-time modulator

Fig. 7. The key waveforms for a general single-update-mode modulator
As an example the z-domain model of the characteristic
system is derived for an end-of-on-time modulator. For this
. . _modulator the following appliesx=0 and T} = (1 — D)Ts,
modulator, the symmetric-on-time modulator and the begwth D (= U) the average duty-ratio. With these parameter
of-on-time modulator respectively. Hence, three out of fOanIues, substitution of (6) in (2) yields
different single-update-mode modulators can be analyzed in a

unified way. Gtot(z) _ TSZ{e_STAR(S)e_SDTS }
The input of the modulatot(t) is separated into a steady- _7 Z{e‘s(HD)TsR(s)} @
state parlU (a constant) and a small excursion to this steady- o ’
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TABLE |
THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEM (a)THE END-OF-ON-TIME MODULATOR, (b) THE BEGIN-OF-ON-TIME MODULATOR
() (b)
case condition Giot(2) case| condition Giot(2)
1 |0<¢(<(1-D)| TsR(z,1-D—) 1 |0<(¢<D T.R(z,D—)
2 | (1-D)<¢<1 | Tsz"'R(2,2—D—() 2 | D<¢<1 | Tez 'R(2,1+D—()
TABLE II

THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEN (@) THE SYMMETRIC-ON-TIME MODULATOR, (b) THE SYMMETRIC-OFF-TIME MODULATOR

(a)
case condition Giot(2)
1 0<¢<i(1-D) L [R(z 31+ D) = ) + R(:, 51 - D) = ()]

2 | 1(1-D)<(<%(1+D) L [R(z, 1(1+D)—¢)+2'R(2,1+ 3(1-D) — g)}
3 J04+D)<¢<1 | Bz} R(51+ 314 D) = Q) + R(2, 1+ 3(1- D) = ¢)]
(b)

case condition Giot(2)
1 0<¢<®2 %[R(z 32 - D)= ) + R(:,5D ()]

2 | B<c<t@-D) | H[R(z32-D)-¢)+2'R(z1+ 1D -]

3 | 3@-D)<¢<1l | B2t R(:1+ 32~ D)= ¢) + R(s,1+ 3D ()]

with (T, =Ta. As in most cases the total deldy is smaller begin-of-on-time modulator can be deduced from the z-domain
than the sampling period;, ¢ is comprised betweetand1 models for the end-of-on-time modulator by substituting the

and two cases can be distinguished average duty ratid in the latter with the complement of the
average duty-ratid — D, and vice-versa (compare Tables I(a)
Gion(2) = T, z{efs(cwm R(s)} for c+D<1  and I(b)).

_ 1 —s(C+D—1)T, . ) . .
Giot(2) = Tsz Z{e (o= R(s)} for (+D>1 B. The UPWM-equivalent for the symmetric-on-time modula-
(8) tor

As another example the UPWM-equivalent of the char-
R(z,m) = Z,{R(s)} = Z{efs(lfm)TsR(s)} ,  (9) acteristic system for a triangular-carrier modulator, the
. . symmetric-on-time modulator, is derived. The waveforms of
equation (8) can be transformed into the symmetric-on-time modulator can be obtained by choosing
a=1/2 in Fig. 7. For this modulator the parametéfs and
Giot(2) = TsR(2,1 — D — () for (+D<1 (10) T are defined asly=T7,=2:(1-D). By using Ta =(T
Giot(2) = Toz 'R(2,2— D —¢) for (+D>1 ' the UPWM-equivalent of the characteristic system can be
expressed as

If the modified z-transform of?(s) is defined as

This model G,:(z) is the uniformly-sampled pulse-width-
modulator equivalent or UPWM-equivalent for an end-of- Gros(2) = EZ {(e—S(C+1—2D)Ts

on-time modulator of the transfer functioR(s)e=*7>. A 2

summary of the z-domain models of the characteristic system + e*S(HHéD)Ts) R(s)} . (11)

for an end-of-on-time modulator with their corresponding

conditions is shown in Table I(a). Depending on whether the different delays in (11) are larger

The UPWM-equivalent for the begin-of-on-time modulatothan the sampling period; or not, and taking into account
the other sawtooth-carrier modulator, can be derived inthlat( is almost always smaller thdn three different cases can
similar way. Though the calculation is omitted, the results akee distinghuised. In the first case, definediby( < %(I—D),
tabulated in Table I(b). Note that the z-domain models for treguation (11) can be rewritten by using the definition for the
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Sl ( Us R Vo Fig. 9. Block diagram for the digitally controlled buck converter
—o
Fig. 8. A buck converter with a first order filter thg pulse-transfer function of the closed loop system can be
written as
Qlz) _ Vo(z)
modified z-transform of (9) Qu(z)  Vouw(2)

G(2)2{e st Gy (5)P(s)}
Guanl2) = 2 [A(= 31+ D)~ " T G Gy P

1
+R(z50-D) =] (12) To calculate this transfer function, the delay+7, and the
If the following applies%(l—D) <§<%(1+D), the second type of modulator used must be known.
transportation delay in (11) becomes larger than the samplingAssume that during normal operation the average duty ratio
period T,. Consequently, the UPWM-equivalent of the charbP of the converter is betwedh5 and1, and that the following

I (17)

acteristic system becomes condition applies for the delay
Ts = (T, > 0.35T%, 18
Girl2) = 5 [R(z 301+ D) =) a7y = (T 2 (18)

+Z—1R(271 n %(1 ~ D) —C)] . (13) thaq the type of modulator and its corresponding UPWM-

equivalent can be chosen.
In the last case weré is comprised betwee (14 D) and If the different cases for the z-domain models in Tables |
1, both delays in (11) are larger than the sampling periodnd Il are compared, it is clear that “case 1” guarantees
Hence, the UPWM-equivalent of the characteristic system cgie fastest dynamics of the system. After all, in the other

be expressed as cases an extra pole appears in the origin, indicating an extra
T delay of a sampling period. Hence, the fastest response of
Giot(z) = ?Sz‘l [R(z,1+ 3(1+ D) —¢) the closed loop system is achievable with a modulator for

which the “case 1" condition can be met. Keeping in mind
+R(z,1+5(1-D)—-¢)]. (14) the required duty-ratio range and condition (18), the begin-
The z-domain models of the characteristic system for tig-on-time modulator (Table I(b), case 1) is the best choice.
symmetric-on-time modulator (12)—(14) with their correspondf only triangular-carrier modulators are considered (Table Il),
ing conditions are recapitulated in Table li(a). the “case 1" condition can never be met. Hence, for these type
Similar calculations are performed to derive the z-doma@f modulators the best solution is to look for a modulator for
models of the characteristic system for a symmetric-off-timghich the “case 2" condition is fulfilled. Consequently, the
modulator. Though the derivation of these models is not explitastest usable triangular-carrier modulator is the symmetric-
itly repeated, the results are summarized in Table 1I(b). Similan-time modulator (Table li(a), case 2). For both the begin-
to sawtooth-carrier modulators, the UPWM-equivalents for tfa-on-time modulator and the symmetric-on-time modulator
symmetric-off-time modulator can be obtained by replaciri§je discrete UPWM-equivalent of the buck converter with a
D with its complementl —D in the UPWM-equivalents for first order filter is derived and simulated in this section.
the symmetric-on-time modulator, and vice-versa (compare ) _
Tables li(a) and I1(b)). A. The begin-of-on-time modulator
To calculate the UPWM-equivalent of the buck converter of
IV."MODEL VALIDATION Fig. 8, an expression for the modified pulse transfer function
To show the validity of the approach, the discrete UPWMyf the first order system (15) is required:
equivalent is deduced for the buck converter of Fig. 8 with a

first order output filter. If the input voltage;,, of the converter P(z,m) = Z{P(s)e‘**‘(l"’”)TS}
is a constant, the Laplace transfer function of its output can 1 wmr 1
be written as (see also Figs. 4 and 5) = Vm;efjj~ (19)
zZ—€e T
Vi Vi

P(s) = T sL/R " 1 . (15) Hence, the discrete UPWM-equivalent of the buck converter
+sL/ A with a first order filter and with a begin-of-on-time modulator

Under the assumption that the transfer function of the melgecomes (Table I(b), case 1)

surement is given by T wor 1

H(S)e—s-rm =1, (16) Gtot(z) = Vm76 T m (20)
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Fig. 10. The root locus for a buck converter with a first order filter, &ig. 12.

The root locus for a buck converter with a first order filter, a
begin-of-on-time modulator and a discrete controller

symmetric-on-time modulator and a discrete controller
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Fig. 11. The closed-loop response of the buck converter with a first ordeig. 13. The closed-loop response of the buck converter with a first order
filter and a begin-of-on-time modulator to a step in the commanded outfilter and a symmetric-on-time modulator to a step in the commanded output

voltage ¢} ,, (t)): the simulated modeks,(¢), sim.) and the z-domain model voltage ¢ , (¢)): the simulated modehs, (¢), sim.) and the z-domain model
(v (t), z-mod.) ’

(vi(t), z-mod.)

With this pulse transfer function and with (16) the controgain will increase or decrease (20). As a result the position

circuit of Fig. 5 can be simplified to the block diagramof the closed-loop pole in the origin will alter depending on

represented in Fig. 9. the average value of the duty ratio. Nevertheless, with a duty-
If the steady-state error of the control loop of Fig. 9 must betio range of 0.5 up to 1 and with a design value for the

zero, the controlle6/(z) requires a pole at=1. Furthermore, average duty-ratio of),=0.75 this effect only results in a

a zero of the controller can be used to compensate for the pglight change in closed-loop response.

of the process (20) at=e™ = . The resulting controller is To verify the theoretical results the closed loop step response

P4 of the buck converter is simulated with Simulink. The simu-
—_— (21) lated waveforms are compared to the results obtained with the

z—1 z-domain model. For the simulation the following parameters
The root locus of the closed loop system for a variable géln were used

is depicted in Fig. 10. Apart from the hidden mode ate= =
there remains only one closed loop pole that can be placed in
the origin by choosing the gain of the controller as follows

G(z)=K

Vin = 400 V7 Ts =20 HS,
L=1mH, R=32Q,
¢=0.375, D,=0.75.

(23)

1L w02

K= (22)

in T The result is depicted in Fig. 11X=D,). A comparison
with D, the design value for the average duty ratio. Consbetween the waveforms obtained with the Simulink model
quently the closed-loop system will behave as a delay of oftbe solid lines) and the step response of the z-domain model
sampling period or, the response is a dead-beat response. If(ttesses) shows that the z-domain model accurately predicts

average duty-rati@ differs from its design valu®,,, the loop the closed-loop behavior of the digitally controlled buck
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converter. Moreover, the step response is clearly a dead-beatals the good agreement. As indicated above the settling
response. time for a step response is equal to 2 sampling periods.

. . V. CONCLUSION
B. The symmetric-on-time modulator

: . . As the performance of digital signal processors has in-
If_a trlangular-carrler _modul_ator is to be used, th‘_a beﬁ?eased rapidly during the last decade, there is a growing inter-
choice is t_he symmetric-on-time modulatqr. The_ dlscregest to replace the analog controllers in low power switching
QPWM—equwaIent for the puck converter with a first ordeE nverters by more complicated and flexible digital control
fllFer and a symmetric-on-time moduIaFor can pe calcu!gt gorithms. Compared to high power converters, the control
with _(19) and Table 1i(a), case 2 (keeping in mind Condltlon)op bandwidths for converters in the lower power range are
(18)): generally much higher. Because of this, the dynamic properties
of the uniformly-sampled pulse-width modulators used in low
T (24) power applications become an important restriction to the
Z(z_e ’) maximum achievable bandwidth of control loops. Though
I,nguency- and Laplace-domain models for uniformly-sampled
&Hlse-width modulators are very valuable as they improve the
neral perception of the dynamic behavior of these modu-
ators, the direct discrete design of the digital compensator
requires a z-domain model for the combination modulator

_(1—D)ZLs
G = v Do (s0m) )z 24”0707
o ZTLQT

This pulse transfer function does not only contain the sal
pole as the system of (20), but it also contains an extra p
in the origin and an extra zero. A dead-beat controller for th
system is of the following form

5 (z _ e—%) and converter. For this purpose a new exact small-signal z-

Giz)=K———%, (25) domain model is derived. In accordance with the zero-order-
(z =1)(z —a) hold equivalent commonly used for ‘regular’ digital control

with systems, this z-domain model gives rise to the development
0= —e~(1-Do) % (26) of a uniformly-sampled pulse-width-modulator equivalent of

) ) N the converter. This z-domain model is characterized by its
However, due to important changes in the position of th&papility to quantify the different dynamics of the converter

s

system zero at = —e~(!~P)= caused by the various valuesor different modulators, its ease of use and its ability to
the average value of the duty ratid may adopt (24), the predict the values of the control variables at the true sampling
closed-loop behavior may change drastically. To avoid this,jistants of the real system. The obtained z-domain models are
is better to choose a somewhat slower controller with a settliegmpared with the results retrieved from simulation models of
time of 2 sampling periods. To achieve this the closed-logppyck converter with a first order filter.

system should have a double pole in the origin, or the root
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