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Introduction

Marching on in time (MOT)-based time domain integral equation (TDIE) solvers
represent an increasingly appealing avenue for analyzing transient electromagnetic
interactions with large and complex structures. Compared to their differential equa-
tion counterparts, MOT-TDIE solvers automatically impose radiation conditions,
do not require unknown fields to be discretized throughout homogeneous volumes,
and are highly immune to numerical dispersion. In addition, the use of averaging,
exact integration, Helmholtz decomposition, and combined field integral equation
methods have rendered these solvers stable for all practical purposes (see [1] and
references therein). Here, we present new techniques for stabilizing MOT-TDIE
solvers that distinguish themselves from the above ones in that they operate hand
in glove with recently developed Calderon-based MOT-TDIE preconditioners. The
proposed preconditioners provide simple mechanisms for eliminating “resonant” and
“DC” eigenvalues from combined and electric field TDIEs, thereby rendering them
immune from late-time ringing and non-oscillatory growth of their solutions. Nu-
merical results that show the validity and the effectiveness of the proposed equations
are presented.

Formulation

Let Γ and n̂r denote the surface of a perfect electrically conducting smooth object
and its outward pointing unit normal at r, respectively. Assume that Γ resides in a
homogeneous medium with electric permittivity ε and magnetic permeability µ, and
is illuminated by the electromagnetic field

(
Ei(r, t),H i(r, t)

)
. The current density

J(r, t) induced on Γ in response to this excitation satisfies the time domain EFIE
[1]

∂T (J)
∂t

=
∂(Ts + Th)(J)

∂t
= −n̂r × ∂Ei(r, t)

∂t
(1)

where
Th(J) =

(
n̂r ×∇R

(∫ t

0

∇s · J
ε

dt

))
(2)

Ts(J) = −
(

n̂r ×R
(

µ
∂J

∂t

))
. (3)

with R(f) =
∫
Γ

f(r′,t−|r−r′|/c)
4π|r−r′| dr′.The temporal differentiations in (1) undo the in-

convenient temporal integration in (2). To numerically solve (1), Γ is approximated
by a mesh of planar triangles, and the current density J(r, t) is approximated as

J(r, t) ≈
Nt∑
j=1

Ns∑
n=1

Jj,nfn(r)Tj(t) (4)
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where fn(r), n = 1, . . . , Ns are Rao-Wilton-Glisson basis functions defined on the
mesh’s Ns interior edges and Tj(t), j = 1, . . . , Nt are higher-order polynomial inter-
polants [1] satisfying Tj(t) = T (t − j∆t) with T (t) = 0 ∀t < ∆t; ∆t denotes the
time step size. Using expansion (4) in (1) and spatial Galerkin testing the resulting
equation at time tj = j∆t yields

TJ = E (5)

where

T =




T0

T1 T0

T2 T1 T0

...
...

...
. . .


 , J =




J0

J1

J2

...


 , E =




E0

E1

E2

...


 , {Jj}n = Jj,n

{Tk}m,n =
〈

fm(r),
∂T (Tkfn)

∂t

〉∣∣∣∣
t=0

, {Ej}n =
〈

fn(r),−n̂r×
∂Ei(r, t)

∂t

〉∣∣∣∣
t=tj

with 〈a(r, t), b(r, t)〉 =
∫
Γ a(r, t)b(r, t) dr. A similar discretization can be performed

for the time domain Magnetic Field Integral Equation (MFIE) J/2 + K(J(r, t)) =
n̂r × H i(r, t) where K(J ) = 1

2 (n̂ ×∇×R(J)) yielding

KJ = H (6)

Equation (5) (and similarly (6)) can be cast in Marching-On-in-Time (MOT) form
as

T0Jj = Ej −
j−1∑
k=0

TkJj−k, j ≥ 0. (7)

This equation can be solved for the current coefficient vector Jj given the current
coefficient vectors Jk, k = 0, . . . , j−1. The MOT process may be unstable, i.e. pro-
duces erroneous solutions Jk that exponentially grow for increasing k. The stability
of the solution is governed by the polynomial spectrum [3] of (5) which is defined as
the (ordinary) spectrum of the matrix

Tp =




(T0)
−1 T1 (T0)

−1 T2 (T0)
−1 T3 . . .

I 0 · · ·
0 I 0 · · ·
...

. . . . . .


 . (8)

The MOT solution of (5) is stable when the spectrum of Tp resides strictly inside
the unit circle of the complex plane [3]. The numerical error introduced by the
discretization may shift some polynomial eigenvalues of (5) that should reside on the
unit circle out of the unit circle. These polynomial eigenvalues belong to two classes:
“resonant” eigenvalues of the form λ = eiθ with θ �= 0 and “DC” (degenerate)
eigenvalues λ = 1.
Resonant eigenvalues. The eigenvalues λ = eiθ (θ �= 0) in the polynomial spec-
trum of (5) are due to the spurious interior resonances characterizing the solutions
of (1). These resonances can be eliminated using the time domain Combined Field
Integral Equation (CFIE) [4]. Unfortunately the CFIE is ill-conditioned in the pres-
ence of dense discretizations. The use of Calderón techniques allows us to obtain
a time domain integral equation free from resonances and that is well-conditioned
independent of the discretization. The use of time domain Calderón formulas [2] led
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Figure 1: Polynomial eigenvalues of EFIE and of pcCFIE. In the figures the circle
is the unit ball in the complex plane centered in 0+0i.

us to adopt the matrix TG−1 as a preconditioner for the matrix T, where G is a prop-
erly chosen Gram matrix. A similar approach leads to the following preconditioned
combined field integral equation (pcCFIE)

(
TlocG

−1T + K
)
J = TlocG

−1E + H (9)

with

Tloc =

0
BBB@

T0

T0

T0

. . .

1
CCCA .

The presence of a localized EFIE matrix Tloc makes equation (9) a valid combined
field integral equation. The need for localizing the square of the EFIE operator is a
well known and delicate issue in designing well-conditioned and accurate frequency
domain EFIEs. It is remarkable that in the time domain this problem has a natural
solution. The validity of the localization in Tloc is due to the fact that TlocG

−1T
shares with TG−1T its ordinary spectrum and with T its polynomial spectrum.
The new pcCFIE has been tested on a sphere of radius 0.25m discretized using
255 unknowns. The incident wave is a Gaussian Ei(r, t) = 4x̂e−γ2

/ (T
√

π) with
γ = 4 (ct − ct0 − ẑ · r) /T , T = 200 meter, and t0 = 300 lightmeter. Fig. 1(a)
shows the polynomial spectrum of the EFIE plotted on the complex plane, Fig.
1(b) shows the polynomial spectrum of the pcCFIE: the resonant eigenvalues of the
EFIE disappeared from the unitary circle of the pcCFIE. Fig. 3(a) compares the
surface currents obtained using both equations.

DC eigenvalues. The presence of eigenvalues λ = 1 in the polynomial spectrum
of (5) stems from the fact that static current loops reside in the kernel of T . A
proper discretization of the square EFIE operator T 2 overcomes the problem. In
fact, defining

T̃h(J) =
(

n̂ ×∇R
(
∇s · J

ε

))
(10)

T̃s(J) = − (n̂ ×R (µJ)) . (11)

it is easy to see that T̃hT̃s = ThTs and T̃sT̃h = TsTh. It follows that the operator
T 2 can be expressed as T 2 = T 2

s + TsTh + ThTs + T 2
h = T 2

s + T̃sT̃h + T̃hT̃s. By
leveraging the properties of the Laplacian, it can be shown that T̃hT̃s resolves cur-
rent loops of any temporal signature. Moreover the definitions in (10)-(11) do not
contain time integrals and, consequently, can be discretized without additional time
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Figure 2: Polynomial eigenvalues of EFIE and of pcEFIE. Comparing (b) and (d)
note the absence of eigenvalues in the latter.
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(a) comparison pcCFIE-EFIE
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Figure 3: Surface currents ([A/m]) on a sphere as a function of the time step ∆t
([lightmeter]) obtained using different equations.

differentiation. Therefore the preconditioned EFIE (pcEFIE) proposed is

T̃sG
−1T̃h + T̃hG

−1T̃s + TsG
−1Ts = TE (12)

The pcEFIE has been tested on the same example used to validate the pcCFIE. The
polynomial spectra of the EFIE and pcEFIE are plotted in Fig. 2. Note that the
eigenvalues around 1 of the EFIE (Fig. 2(b)) are not in the polynomial spectrum of
the pcEFIE (Fig. 2(d)). The surface currents on the sphere obtained with the EFIE
and with the pcEFIE are depicted in Fig. 3(b): clearly the pcEFIE solution cannot
suffer from DC instabilities.
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