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Abstract—In this demo we present a people tracker in indoor
environments. The tracker executes in a network of smart
cameras with overlapping views. Special attention is given to
real-time processing by distribution of tasks between the cameras
and the fusion server. Each camera performs tasks of processing
the images and tracking of people in the image plane. Instead of
camera images, only metadata (a bounding box per person) are
sent from each camera to the fusion server. The metadata are
used on the server side to estimate the position of each person in
real-world coordinates. Although the tracker is designed to suit
any indoor environment, in this demo the tracker’s performance
is presented in a meeting scenario, where occlusions of people
by other people and/or furniture are significant and occur
frequently. Multiple cameras insure views from multiple angles,
which keeps tracking accurate even in cases of severe occlusions
in some of the views.

I. INTRODUCTION

Real-time people tracking is of fundamental importance in
many vision applications, e.g. surveillance, elderly care or
video conferencing. In real-world environments it is still a
challenging task, mainly due to frequent occlusions of people
and changes in the environments themselves (e.g. lighting
changes). To handle occlusions multiple surveillance cameras
are used to insure views on people from different angles.
In classical (centralized) systems the cameras are just visual
sensors connected to one or multiple servers with dedicated
processing power, which limits the network expansion and
creates communication load between the servers. To overcome
the problems of centralized systems, in the recent years with
development of smart cameras it is possible to distribute the
computational load towards the cameras, creating scalable (de-
centralized) systems [1]. In this demo we show a decentralized
scalable system working in an indoor setup.

II. SYSTEM OVERVIEW

Our system is constructed from multiple extrinsically cal-
ibrated smart cameras (simulated by IP cameras connected
to dedicated PCs) and one fusion node (an additional PC)
which estimates ground plane positions of people. The cameras
perform tasks of foreground segmentation and 2-D tracking
(tracking in the image plane), sending only the bounding boxes
to the fusion node, as shown in Fig. 1a. The 2-D hypotheses

are used in the fusion node to construct an evidence map
for each person and from each camera view. These evidence
maps are further fused into one final occupancy map for each
person. For fusion of the evidences we use Dempster-Shafer
(DS) theory [2], see Fig. 1b. The ground plane position for
each person is estimated using a Bayesian filter approach and
approximated as the ground cell with the highest probability.
Furthermore, the ground plane positions with the predefined
person’s width and height are used to construct a person’s
cuboid, which is back-projected to each camera view and
used to correct or verify the 2-D tracking hypotheses. 2-D
tracking on the camera side is especially important when
there is no frequent feedback from the server (e.g. due to
processing or communication delays) since in those cases
cameras themselves can still estimate positions of people and
keep tracking them.

III. DEMO DESCRIPTION

The setup we use for this demonstration has one top view
and four side view cameras. The cameras are placed on
different sides of a room. The room is furnished with tables
and chairs to resemble a meeting room. People are detected
when entering the room and tracked within the room as
illustrated in Fig. 2. We demonstrate the tracker’s performance
in a meeting scenario with the following events: entering the
room, walking with different speeds (from standing still to
walking fast), sudden changes of walking direction, people
coming close to each other to shake hands, walking around
tables to find a place to sit, moving chairs and tables to
rearrange the room, sitting and standing still, changing a sitting
position, bending over and under a table, and exiting the room.

On a camera side we also demonstrate the performance of
our foreground segmentation method [3] based on detection
of moving edges, which was developed to deal with sudden
lighting changes. We also show the advantage of this method
compared to two other foreground segmentation methods:
Gaussian mixture model based, implemented by Zivkovic [4]
and ViBe [5], see Fig. 3.

The scalability of the whole system is demonstrated by
adding cameras to the system and showing that fusion pro-
cessing remains real-time.
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Fig. 1. The system architecture: a) Left: block diagram of the whole client (camera)- server (fusion node) architecture; b) Right: diagram
of the occupancy mapping block.
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Fig. 2. Example of camera views and the tracking result. On a
camera side 2-D hypotheses for different persons are represented with
different colors. The same colors are used to represent the tracks
and the current positions (visualized by colored dots) on the ground
plane. The black rectangle on the ground plane image in the bottom-
left represents the area around the table. The rectangle was used for
a visual reference during the testing of the system.

IV. CONCLUSION

In this demo we present a solution to overcome typical
tracking problems of occlusions and non real-time perfor-
mance, by using a network of smart cameras with overlapping
views. This work is a good basis for further research towards
creating real-time people tracker for even more complex and
more crowded environments.
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Fig. 5. Example frames of a global and local lighting changes. Black pixels correspond
to foreground regions. First row: input frames; Second row: results for GMM by [14];
Third row: results for ViBe by [1]; Forth row: results for our proposed method. Our
proposed method is less influenced by lighting changes.

might be lost. Due to the fact that edges cannot be compared directly with fore-
ground masks of foreground/background segmentation techniques, we clustered
edges using a nearest-neighbor technique and combined them by a convex hull
to represent silhouettes of moving people. The convex hull is constructed around
a cluster of edges and usually results in sub-optimal solution to construct the
silhouette of a person. However, this only used for comparison with FG/BG
methods to construct an occupancy map.
We used occupancy maps (i.e., a top view of the scene) together with Dempster-
Shafer reasoning as explained in [6] to get the person’s position in the scene. An
occupancy map is calculated using different camera views and fusing foreground
silhouette onto the ground plane. In this sequence we have four different views of
the scene and per second manually annotated ground truth data of each person.
For each occupancy map, the positions of people were compared to ground truth
data.
To evaluate the soundness of all maps per time instance we use two measures,
n and p, as described in [11]: n represents a measure of evidence at a person’s
position (within a radius of 10cm, n = 0 is the ideal case) and p a measure of no
evidence outside the positions (p = 0 is the ideal case). For p, we choose a ra-
dius of 70cm around the person’s position. Those measures provide a reasonable
evaluation of foreground/background methods as stated in [11], e.g. for tracking
applications. The ideal case for a method should be that n = 0 and p = 0, which

Fig. 3. Example of results of the compared foreground segmentation
methods: first row original images, second row method of Zivkovic
[4], third row ViBe method [5], last row our method based on
detection of moving edges [3]. After the detection of moving edges
we construct foreground blobs from these edges using convex hulls.
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