ﬁ?“famm‘mnhmmon Networke and Optical Communications - NOC2005

Service aware Access Networks through Network
Processor Technology

Koert Vlaeminck, Tim Stevens, Wim Van de Meerssche, Filip De Turek,
Bart Dhoedt, Piet Demeester

Abstract This paper presents the design of o network system using network processor tech-
nology, aiming at introducing service awareness in access network nodes. Firewalling and network
address translation were selected as reference upplications, since they offer a clear and simplified
use case of 4 more generic service enabler: pucket classification. Our target platform is Intel’s
second generation network processor, more specifically the IXP2400. Implementation details of the
service reveal some typical characteristics of network processor programming. A detailed perfor-
mance analysis of the implemented services is presented and the system’s bottleneck is identified,
while possible solutions to alleviate this bottleneck are suggested.

Keywords eccess network, network processor, hetwork services, service enablers, packet clas-
sification, firewall, network address transiation.

1 Introduction

Within the IST MUSE project [1] and other IST projects, such as NOBEL (3] and
BREAD (2}, substantial research effort is currently devoted to the realisation of the ‘broad-
band for all’ concept within Europe. Each of these projects focuses on different parts of the
network (i.e., access, metro and core networks), working towards an integrated solution. The
overall objective of MUSE is the development of a future, low-cost access and edge network,

.-enabling the delivery of broadband multimedia services to subscribers.

Offering higher layer services in the access network involves increasing application aware-
ness and intelligence in IP network nodes, while bringing IP awareness closer to the end-
user. In order to meet subscriber demands, especially in residential access environments, the

"« presence of additional packet processing units in network nodes is required. Due to their
~specific hardware architecture —based on far-reaching parallelism features— and their low
power consumption, network processors are a perfect match for upgrading current network-

- ing equipment. 'We assume a (future) full Ethernet access network with IP-aware access

el multiplexers, as depicted in 1. This implies IP-awareness at the CPE, the DSLAM and
i .+ the Edge Router (ER). Future DSLAMs or ERs may offer a number of service enablers, or
- &ven implement some value-added services (e.g., firewalling & network address translation,

" intrusion detection, proxy services).

» -~ This paper presents application architecture and performance details for a firewalling / net-
“wark address {and port) translation (NAPT) setvice implemented on one of Intel’s second

&ﬂnemtmn network processors, the IXP2400. A firewslling / NAPT service is selected be-

eause it offers a clear and simplified use case of a more generic service enabler: packet

“u G}&B!ﬁcatmn First, a pipelined architecture similar to Linux’ Netfilter is mapped onto

27

- 10" European Conference on Networks and Optical Communications - NOC2005

., O e, i
A P OSCAM ™ Eanich araty

wetomay) 4 08 frowa,

cPE : IPawarp IOV SRIVCES)

Figure 1: Depicts the assumed access network topology: a full Ethernet access network wi

aware access multiplexers (CPE: Customer Premises Equipment, DSLAM: DSL Aceess Multi

NAP: Netwotk Access Provider)

the available hardware resources, revealing typical characteristics of network process(
gramming, Later, the implemented solution is evaluated and compared to coarse ane
models, identifying the system’s bottleneck is processing power rather than memory 1
which is reduced by the parallelism features. Possible optimizations are highlighted.

i The remainder of this paper is structured as follows: Section 2 reports on relate
| in this area. The target hardware platform, Intel’s second generation network proce
presented in section 4, while the selected reference services, firewalling and NAPT, ¢
with their mapping to the selected hardware, are covered iu section 4. Section & pre

detailed performance analysis, including cosarse analytical models. Finally, Section 6 |

possible future work and concluding remarks.

2 Related work . .

Design and development of network systems using network processors (NPU)
topic. In August 2003, a special issue of IEEE Network was dedicated to the subject
articles were published providing an in-depth description of how specific data plane {
can be implemented using an NPU: one article on the implementation of a DiffSe
router on & first generation Intel NPU [5], the IXP1200, the other on the implem
of an [Pv4/IPv6 transition mechanism on that same NPU [6]. Another article in t
describes the design and implementation of an intelligent DSLAM using NPUs (7]
data plane functionality, again the IXP1200 was selected.

More recently, the October 2004 issue of [EEE Micro was dedicated to networ
sors. In this issue, we still see papers on the first generation Intel network processo
presents a simulation infrastructure for the IXP1200 which also provides an estimati
for measuring the simulated processor’s power consumption. However, we also see t
generation Intel network processors appear: e.g. (9] presents the PRO3 hybrid N
tecture and compares it to the Intel IXP2400, while {10] cornpares, analyzes and
cryptographic algorithms on the Intel IXP2800.

Similar work on the implementation of service enablers on content processor
the Broadcom SB1250 (as opposed to network processors, like the aforementioned
families), was presented in [11].

B
‘.'i
B

28

e ey s A RO T

10" European Conference on Networks and Optical Communications - NOC2005

st G 1 AN TASYY

Receive "
Driver Mitroengine

| Packet Miaioengine(s)
|Procassing & XScale

‘ .
Transmit "
Diver ~ Misroengine
(a) paradigm (b) enp-2611

Figure 2: Depicts the receive - process - transmit paradigm for programming an Intel IXP2xxx
in 2(a) and the Radisys ENP-2611 Intel IXP2400 evaluation board in 2(h).

3 Iutel’s second generation Network Processor

We selected Intel's second generation network processor (IXP2xxx) as a target plat-
form for implementing our network system. Our evaluation board from Radisys, the ENP-
2611 [13] depicted in Fig. 2(b), is a PCI board sporting an Intel IXP2400 network processor,
16 MB of flash memory to store boot code, 8 MB of Quad Data Rate (QDR II) SRAM,
256 MB of Double Data Rate (DDR) DRAM and a SPI-3 (System Packet Interface) Bridge
FPGA, connecting three Gigabit Ethernet (GbE) interfaces to the IXP’s Media and Switch
Fabric (MSF) interface.

The major IXP2400 processing units are the XScale control processor and eight micro-
engines (ME), organized into two clusters of four. The Intel XScale core is a general-purpose
32-bit RISC processor, compatible to the ARM Version 5STE Architecture [14], running at
600 MHz. It has a 32 KB data cache, a 32 KB instruction cache and a ¢ KB mini-data

- -cache. Its main functions are chip management and initislization, but it cun also be used
. for higher layer network processing tasks.

The ‘microengines are small RISC processors, also running at 600 MHz, with an in-

- Struction set specifically tuned for processing network data and support for eight hardware

. threads. Each ME has an independent instruction store large enough for 4K, 40-bit instruc-

- _tions, which is initialized Ly the XScale core. Furthermore, each ME has 640 long-words {=

"+ 8 bytes) of low-latency local memory. Microengines do the main data plane processing per

<+ packet,
s - 'The IXP2400 also has a Hash Unit, offloading hash calculations from the XScale core and
. the microengines. Furthermore it has support for three types of memory, shured between
it rth'!!' diffetent processing units. The 16 KB of on-chip scratchpad memory is the fastest.
.f M*Pﬁr&te SRAM controllers provide high-speed access to up to 128 MB of QDR SRAM
{64 MB per channel). SRAM is typically used for control information storage. Finally, the
‘ PRAM controller provides access to up to 1 GB of DDR DRAM, which is typically used for

29

10" European Conference on Networks and Optical Communications - NOC20¢

data buffer storage.
4 Programming an IXP2xxx

Intel second generation network processors are programmed using the receive - pi
transmit paradigm [15] as depicted in Fig. 2(a): receive, process and transmit tasks
different processing units (microengines and / or XScale core) with queues betwee
The microengines can run a series of sequential processing tasks (pipelined approa:
pool of parallel processing tasks or a mixture of both.

We selected firewalling and network address & port translation {NAPT) service
erence applications for implementation on the IXP2400. Both services are deploy
large scale in the access network, though nowadays almost exclusively in customer -
equipment (CPE), requiting advanced end user networking skills. In future scenar
likely that access nodes will implement such services to meet or anticipate customer -
For network access providers (NAP), this will generate new revenue streams and
increased control over the data traveling through their networks.

Furthermore, firewalling / NAPT service offers a clear and simplified use case ¢
generic service enabler: packet classification. Performance evaluation of a firewall
implementation on Intel network processor hardware gives a good indication of t
network services will perform on this architecture, since it is exactly this packet cla:
that induces a bottleneck on performance, as we will show in the next section.

We based our implementation on the netfilter / iptables [16] forwarding chain
and iptables are building blocks of a framework that enables packet filtering, netwo:
{and port) translation and other packet mangling inside the Linux kernel. Input a
chains process packets destined to and originating from a host. As our firewal
service is meant for integration in access network equipment, only the forwardir
important for data plane traffic.

The netfilter forwarding chain consists of several hooks, which identify the
packet processing tasks: (i) First, the pre-routing hook performs connection tr:
destination address / port translation; (ii) then the routing decision is made;

forwarding hook it is decided whether the packet is to be forwarded or not
decision); (iv) finally, the post-routing hook performs source address / port tran

Connection tracking is fundamental for network address (and port) translati
belonging to the same connection have to be treated the same way. It also enat
packet inspection. A stateful firewall not only increases security, but packet proce
may also increase, since the sequential search through the firewall rules can be
packets belonging to a registered connection.

Mapping the netfilter components to the [IXP2400’s processing units is relativ
forward, as depicted in figure 3(a). Receive and transmit code each occupy one 1
A third microengine is used for resource management, on which 6 threads are acti
ory allocation, (ii) free memory, (iii) search for conntracks that timed out, (iv)
TCP ports for NAPT, {v) allocation of UDP ports for NAPT and (vi) allocat’
ID’s for NAPT. This leaves five microengines for packet processing: the pre~
occupies one, routing occupies a second and firewall & post-routing can be co

third. Earlier experience {17} with Intel’s first generation network processor (t
has learned that the sequential search through the firewall rules is very resot
and induces a performance bottleneck. A first implementation, where packets 1
against the firewall rules at the core, only allowed 1500 new connections to 1

30

10™ European Conference on Networks and Optical Communications - NOC2005

(&) firewall / NAPT (b) performance

, Figure 3: Depicts the mapping of the firewall components on IXP2400 hardware in 3(a), while 3(b)
depicts the performance of this implementation for an increasing number of rules, measured using
two GbE interfaces (one for upstream, one for downstream) and minimum sized packets. All 8
threads per ME are active.

second on IXP1200 hardware!. Implementing the search through the firewall rules at the
microengines increased this number to up to 58000 new connections per second for a small
rule set. However, the firewall performance drops very fast with an increasing number of
rules. This still holds true for the second generation of Intel network processors, as we will
show in the next section. Therefore the firewall & post routing code was duplicated on the
remaining twe microengines. The routing microengine pushes the packets it has processed
on a ring, which the three firewalling & post routing MEs use to get their packets. Packets
can be processed independent of each other. That way, three MEs perform the firewall &
" post routing in parallel, each on different packets.

5 Network Processor performance evaluation

. A Spirent Smartbits 6000 network performance snalysis system {18] was used to measure

the IXP's performance. Each test was done using minimum sized IP packets (64 byte),

. implying a-packet rate of 1,448,095 packets per second at GbE speeds. The packet inter-

arrival-time is 672 ns, which means each microengine, running at 600 MHz, has 403 clock

cycles per packet to do its work.

- As already stated in the previous section, the sequential search through the firewall rules

limits the IXP’s performance. In stateful firewalls howevet, packets of known conhections can

-+ be immediately accepted or rejected, based on connection tracking information, and only the

~ fivat packet; of sach connection has to be matched against the complete firewall rule set. That

'+, ‘Way e were not able to stress our IXP2400 evaluation board using two Gigabit Ethernet

Anterfaces (one connected to the network to protect, the other to an untrusted network).

‘Therefore, for performance evaluation purposes, we forced the firewall to match every packet

-against its complete rule set, We measured the IXP’s throughput for an increasing number

of firewall rules. 100% means all 1.448 million packets / s can be processed. Results are
rsuminarized in Fig. 3(b) and will be explained below.

With only one firewalling microengine, our IXP2400 evaluation board is able to handle

fO ‘sgven. firewall rules at gigabit speed. This is clearly insufficient. Duplicating the

@imthu due td connection tracking, only the first packet of each connection has to be matched against
e Mm}m

31

32

" . 10" European Conference on Networks and Optical Communications - NOC2005

.
L O —_—t » —irt
] am
L T
B b) *

: T T)
Ftvnn /12 ot j

(a) rules in SRAM (b) rules in local memory

Figuro 4: Depicts the throughput of the IXP2400 firewall / NAT implementation when processing
30 rules. for a varying number of threads per ME, with one to three MEs running the packe

classification code.

firewall code on a second microengine doubles this performance: up to 14 firewall rules ca
be handled at gigabit speed. This proves the sequential search to the firewall rules is indee
a bottleneck to the IXP's performance. Adding a third firewalling microengine, however, t
longer increases performance, The bottleneck has shifted from processing the firewall rul
to fetching those rules from SRAM memory, as we will show below (cf. Fig. 4(a)).

Although a multithreaded design — remember that each IXP2400 ME has support f
eight hardware threads — helps in hiding the latency of the SRAM accesses, required {
fetching the firewall rules from memory, faster memory could save some cycles per firew:
rule when processing a packet. We made an implementation where the rule set is stor
in the firewall microengines’ local memory. Data can be read from this memory in ot
three cycles (cf. 90 cycles for SRAM access). This implementation, able to handle sev
to eight firewall rules per microengine at gigabit speed, is actually only slightly faster tk
the implementation where rules are stored in SRAM. This shows the multithreaded des:
is actually very efficient at hiding memory latency. .

The local memory implementation does, however, have another advantage: each mic
engine has its own local memory. Adding & third firewalling microengine to this implem
tation further increases performance: up to 23 rules per packet can be processed ab gige
speed, using three MEs. On the downside, we were only able to store up to 80 rules in
limited ~ 640 longwords ~ amount of local memory.

Fig, 4 illustrates the effect of multithreading on both implementations. The XP2400
a 30-rule firewall — remember that none of the presented implementations can process n
than 23 rules at linerate — running on 1 to 3 microengines for a varying number of thre
Fig. 4(a) depicts the throughput of the SRAM implementation, while Fig. 4(b) depicts
throughput of the local memory implementation.

Again we see that adding a second firewall ME doubles performance for the SRAM in
mentation, while a three ME implementation does not further increase overall througt
The performance of the 3 ME SRAM implementation saturates at 4 active threads pe:
croengine, while the 2 ME SRAM implementation requires 6 active threads per microet
before reaching maximum performance. This indicates that the SRAM memory is at
sustain up to 12 firowall threads before becoming a bottleneck.

For the local memory implementation we see that enabling additional threads doe
influence performance that much. From 2 threads per ME on, performance is roughiy
stant. This result was expected: since accessing a longword from local memory only
3 clock cycles, muitithreading is no longer beneficial for hiding memory latency. ?

‘

10" Bussgman Conterence on Networks and Optical Communications - NOC2005

B

threadisng i ipositive influence, however, since the packet headers atill have to
be fetched it .Brom Fig. 4 it is also clear that the one and two ME local memory
implementationd Baie aitpilar performance as the SRAM implementations on one and two
MEs respectively. Adding a third ME to the local memory implementation further increases
performance however, which is not the case in the SRAM implementation.

To see how far we could push the IXP2400 hardware performance-wise, we hand-coded
and optimized firewall rules in microcode. This implementation exploits no memory accesses
and is very performing: using 3MEs, up to 210 rules per packet could be handled at gigabit
speed, as is illustrated in Fig. 3(b). Of course it is not possible to deploy this implementa-
tion for real-life operation, since updating the firewall rule set implies reimplementing and
reoptimizing the microcode. However, it shows that using other algorithtus for implementing
the firewall — more optimal than a sequential search through the rule set and more flexible
than hand-coding the firewall rules in microcode — could further increase performance, since
there’s clearly some headroom before the other components in the implementation could
become a bottleneck.

6 Conclusion and Future Work

In this paper we evaluated the suitability and performance of network processors, aiming
at increasing application awareness and intelligence in IP network nodes. We chose packet
classification as a service enabler (evaluated through a firewall / NAPT implementation) and
Intel’s IXP2400 as target platform. Typical characteristics of network processor program-
ming - i.e. receive - provess - transmit paradigm — were revealed. A detailed performance
analysis showed the sequential search through the firewall rules to be a bottleneck. Our very
flexible — since rules can be updated in memory while the firewall is running ~ uetfilter based
implementation was able to handle up to 23 rules per packet at gigabit speeds using three
‘microengines, checking every single packet. While totally inflexible, since updating the rule
set implies reimplementing the firewall, the implementation where rules were hand-coded
and optimized for execution on the microengines shows there is still a lot of room from

- improvement.

" "“'We are currently investigating other algorithms for implementing the firewall, more per-
forming than an a sequential search through a rule set stored in memory and more flexible
-than hand-coding the rules in microcode. First results of an implementation based on an
algorithm using ordered binary decision diagrams for representing the rule set, which allows

 larger rule sets to be used without sacrificing performance [19] look very promising and will
be-reported upon in a future publication.

: ’A_'ck:nowladgement
: ‘ This:“'mk is supported by the IST FP6 MUSE project [1].
 Contact information
- %Waemmck (koert.vlaeminck@intec.ugent.ba)
.- Depnttinent of Information Technology (INTEC)
= g&;q Vniversity - IBBT - IMEC

oo Pletersnieuwstraat 41, B-9000 Gent, Belgium
, T&H:m (0)8 331 4942, Fax. +32 (0)9 331 4899

33

10™ European Conference on Networks and Optical Communications - NOC200

34

References

[1] Multi Service Access Everywhere, http://wwa. ist-muse.org/.

(2] Broadband in Europe for All: a Multi-Disciplinary Approach, http:/ Juww . ist-bread.

[3] Next Generation Optical Networks for Broadband European Leadership, http:/
ist-nobel.org/.

(4] H. Vin, R. Yavatkar, Guest Editorial: Network Processors, IEEE Network, Jul/Aug 200
17, No. 4, Pages 10-11.

{5} Y.-D. Lin, Y-N. Lin, 5.-C. Yang, Y.-8. Lin, DiffServ Edge Routers over Netwark Procc
Implementation and Evaluation, 1EEE Network, Jul/Aug 2003, Vol. 17, No. 4, Pages 2

[6] E. Grosse, Y. N. Lakshman, ‘Network Processors Applied to IPu{/IPu6 Transition,
Network, Jul/Aug 2003, Vol. 17, No. 4, Pages 35-39.

[7] R. Neogi, K. Lee, K. Panesar, J. Zhou, Design and Performance of a Network-Processo:
Intelligent DSLAM, IEEE Network, Jul/Aug 2003, Vol. 17, No. 4, Pages 56-62.

(8] L. Yau, J. Yang, L. N. Bhuyan, L. Zhao, NePSim: A Netwerk Processor Simulator
Power Evaluation Framework, IEEE Micro, Sep/Oct 2004, Vol. 4, No. 5, Pages 34-44.

{9] L Papaefstathiou, e. a., PROS3: A Hybrid NPU Architecture, IEEE Micro, Sep/Oct 20
4, No. 5, Pages 20-33.

{10] Z. Tan, C. Lin, H. Yin, Optimization and Benchmark of Cryptographic Algorithms on.
Processors, IEEE Micro, Sep/Oct 2004, Vol. 4, No. 5, Pages 55-69.

111] T. Vermeiren, E. Borghs, B. Haacdorens, Evaluation of software techniques for parall
processing on multi-core processors, IEEE CCNC 2004, Las Vegas, Jan 2004.

(12) L. Zier, W. Fischer, F. Brockners, Ethernet-Based Public Communication Services: C
and Opportunity, IEEE Communications Magazine, Mar 2004, Vol. 42, No. 3, Pages

[13] Radisys Corporation, ENP-2611 Hardware Reference, August 2003, http://wwi.T
com/filas/support_downloads/ 007-01419-0003 . ENP-2611HW. pdf.

[14) The ARM Instruction Set Architecture, http://www.arm.com/product
architecture.html.

(15} E. J. Johnson; A. R. Kunze, IXP2400/2800 Programming, The Complete Microengir
Guide, Intel Press, 2003.

[16] Netfilter documentation, nttp://www.netfilter.org/documentation.

[17) K. Vlaeminck, *F. Stevens, F. De Turck, B. Dhoedt, P. Demeester, Deployment o
PrOCESSOTS N GCCESS networks to provide service enabling functions: evaluation re
European Conference on Networks & Optical Communications (NOC2004), Jun 29-]

Proceedings, Pages 70-77.
[18] Spirent Smartbits 6000 Product Overview, http://ww . spirentcon. com/docunent:

[19] S. Hagelhurst, A. Attar, R. Sinnappan, Algorithms for Improving the Dependability ¢
and Filter Rule Lists, International Conference on Dependable Systems and Netwe
2000), Jun 25-28, 2000

