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Abstract 

In this paper an alternative approach to non-linear predictive 
control is presented. It is based on iterative linearisation of 
the model response so that the same closed loop responses as 
in the pure non-linear approach are obtained but with 
reduced computation times and  more efficient optimisation 
tools. The method is applied to a high purity distillation 
column and some results are presented showing the 
behaviour of the proposed algorithm. 

Keywords: non-linear predictive control, distillation 
columns, constrained systems 

1. INTRODUCTION 

MPC is now recognised in the industrial world as a proven 
technology, capable of dealing with a wide range of 
multivariable constrained control problems. Nevertheless, 
most of the industrial controllers are based on linear internal 
models which limits its applicability. Because of it, non-
linear model predictive control NMPC has received a lot of 
attention in the latest years, both from the point of view  of 
its properties (Camacho et al. 2005) and implementation 
(Bartusiak, 2005). Referring to this last aspect, the main 
drawback is the computational burden that NMPC implies.  

While linear MPC with constraints can solve the associated 
optimisation problem each sampling time using QP or LP 
algorithms, for which very efficient codes are available, 
NMPC relies on non-linear programming (NLP) methods 
such as SQP, that are known to be far more CPU demanding. 
Several schemes have been proposed to deal with this 
problem among them the well known sequential and 
simultaneous approaches. 

For sequential solutions, the model is solved by integration 
at each iteration of the optimisation routine. Only the control 
parameters remain as degrees of freedom in the NLP. 
Simulation and optimisation calculations are performed 
sequentially, one after the other. The approach can easily be 
coupled with advanced simulation tools. In contrast, 
simultaneous model solution and optimisation includes both 
the discretized model states and controls as decision 
variables and the model equations are appended to the 
optimisation problem as equality constraints. This can 
greatly increase the size of the optimisation problem.  Most 
of the times SQP like algorithms are used. In spite of other 
recent proposals (Bock, 2005) computation time remains a 
difficulty in order to implement NMPC in real processes . 

In order to overcome this drawback several alternatives to 
standard NMPC have been proposed like NMPC techniques 
based on model linearization. An overview of these can be 
found in (Bequette, 1991; Henson, 1998; Morari and Lee, 
1999). Another approach (De Keyser, 1998) is considered in 
this paper, which uses a local linearization of the process at 
each sampling time to compute an ‘optimized response’, 
analogous to the ‘forced response’ of linear MPC methods, 
and the procedure is applied iteratively until the same non-
linear solution is reached using only QP algorithms that are 
both fast and reliable. 

This paper describes the iterative linearization technique and 
compares a NMPC algorithm using the sequential approach 
and a version of the iterative linearization applied to a 
nontrivial process control example. Section 2 presents the 
process, an industrial distillation column of an alcohol plant, 
and its control objectives. Section 3 deals with the predictive 
controller algorithm, while section 4 shows several results. 
The paper ends with some conclusions. 
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2. PROCESS DESCRIPTION 

2.1 Distillation column 

Distillation is an important process widely used in industry. 
In our case we focus the attention to a high purity distillation 

column of the sugar industry. The feed is a mix of three 
main products: water, ethanol and propanol, and the ethanol 
is extracted from the accumulator and, mainly, using a top 
lateral extraction. The column has 75 plates and besides 

being a multi-component one, deals with azeotropes, which 
makes it more complex. 
The regulation goal is keeping the ethanol molar 
concentration of the column-bottom and the water molar 
concentration of the column-top close to its set points. To 
obtain this control objective two manipulated variables were 
selected: the lateral neutral alcohol flow and the steam 
inflow to the reboiler. Other variables are kept under control 
by local PID controllers: the level in the column bottom by 
manipulating the outflow, the accumulator level by 
manipulating the reflux and the head column pressure by 
manipulating the refrigerant flow to the condenser. Flows of 
steam to the reboiler and neutral alcohol are maintained 
using PID controllers. 

Fig. 1: Simplified sketch of the Neutral Alcohol Distillation Column 

2.2 Plant modeling 

A detailed model of the process has been developed and 
tested with real data. The main hypothesis considered are 
listed next: 

A non-constant vapour flow is considered, and it is 
calculated on the basis of the energy balance assumed 
for each of the plates. 
Total pressure loss of the column is distributed linearly 
among all the plates. 
The vapour and liquid that flow from the plate are in a 
state of thermal equilibrium and also at the same 
pressure. 
The vapour and liquid that flow from the plate are not in 
phase equilibrium owing to the definition of a Murphree 
efficiency.
The vapour-liquid equilibrium is represented taking into 
consideration:

- Vapour phase as being ideal 

- Liquid phase as being not ideal: Wilson’s model is 
employed to calculate the activity coefficient 

The equations that represent the behaviour of a generic plate 
are the same for the complete column (all the variables are 
described in the attached nomenclature): 

Overall balance of material:
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Overall energy balance:
The changes in the specific enthalpy of the liquid phase are 
generally very small compared with the total enthalpy of the 
plate. This means that, normally, the energy balance can be 
reduced to an algebraic equation which is used as the basis 
to calculate the flow of vapour from the plate. 
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Temperature calculation:
The bubble temperature is that one which is in equilibrium 
with a known composition of the liquid at a determined 
pressure which is also known. 
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Equilibrium ratio between vapour-liquid phases: 
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Total pressure on plate n: 
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Flow of liquid from plate n:
The flow of liquid is calculated on the basis of Francis’ 
formula for segmented sinks: 
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The model involves 2700 equations and 157 states and was 
simulated and tested using the EcosimPro modelling and 
simulation language. 
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3. PREDICTIVE CONTROLLER 

Nonlinear predictive control (NMPC) is a natural extension 
of the linear MPC technique. The algorithm is also based on 
the use of an internal plant model, which captures the main 
process characteristics. As mentioned in the introduction, 
two different formulations of NMPC were compared, a 
direct NMPC and a iterative linearization technique. 

3.1 NMPC Controller 

The objective of the non-linear model predictive control 
(NMPC) is finding the future optimal manipulated variable 
sequence in order to minimize a function based on a desired 
output trajectory over a prediction horizon. The cost function 
is the integral over the squares of the residuals between the 
model predicted outputs ypred and the set point values r over 
the prediction time N2  (where N2 is the prediction horizon 
and  is the sampling time). A typical formulation is 
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The change in the manipulated variable u is also included in 
the minimization. The minimization (9) is done subject to 
the continuous model equations and to the typical 
restrictions applied on the manipulated and controlled 
variables: 
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Of the Nu moves in the optimal control sequence, only the 
first component is implemented. 
Within this schema the continuous formulation of the 
process model is used to calculate the predictions ypred(t)
needed for the minimization of (9) using a dynamic 
simulator (Fig. 2). 
In this formulation, the model equations are not explicit 
restrictions to the optimisation problem, being the 
manipulated variables the only decision variables. The 
simulation package will integrate the model equations along 
the prediction horizon taking as initial conditions the current 
process state and evaluating the formulated objective at the 
end of the integration. Path constraints are implemented as 
penalization functions when a constraint is violated in the 
simulation block.  

The controller law solution leads to a non-linear 
programming problem, which could be formulated 
generically as a real time minimization of a non-linear 
function subject to constraints. 

3.2 Nonlinear iterative EPSAC formulation  

The key idea of this formulation is to approximate the non-
linear predictions by iterative linearizations around future 
trajectories, so that they converge to the same non-linear 
optimal solution. For this purpose, the future sequence of 
manipulated variables is considered as the sum of a basic 
future control scenario, called 0),/( ktktubase  and 
optimizing future control actions 1Nk0),t/kt(u u :

)/()/()/( tktutktutktu base  (11) 
In this way the output predictions can be considered as being 
the cumulative results of two effects: 

)t/kt(y)t/kt(y)t/kt(y optimizebase
 (12) 

The component )/( tktybase  is calculated using the non-
linear model and the known (postulated) sequence 

)/( tktubase  as the model input. The other component 

)/( tktyoptimize  is the cumulative effect of a series of 

impulse inputs and a step input (De Keyser, 1998). 
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Using matrix notation, the prediction equation becomes 
GUYY                      (14) 
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where the parameters 
2,...,..,, 21 Nk hhhh  are the coefficients of 

the unit impulse response of the system at the current 
operating point, whereas the values gk refer to the unit step 
response coefficients. 

Fig. 2 – Non-linear Controller – Continuous implementation Framework. 
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For a complex dynamic model obtaining a linearized model 
is not an easy task. To avoid it, a possible alternative is to 
use the non-linear model to calculate the coefficients hk and 
gk through the model simulation procedure. Recalling that 

1kkk ggh , a new formula is obtained for 

)/( tktyoptimize :
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The step response coefficients can be calculated each sample 
instant simulating the non-linear model of the system with a 
particular future sequence )t/kt(u*  taking as initial 
conditions the current process state and evaluating the 
predictions )/(* tkty .
Based on (14)...(16) the cost function is a quadratic form in 
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and the optimisation problem, the minimization of J subject 
to the constraints (10), is solved with simple quadratic 
programming techniques (QP). 
The calculation of the predicted output (12) involves the 
superposition principle. When a nonlinear system model is 
used, above strategy is only valid - from a practical point of 
view - if the term optimize ( | )y t k t  is small enough compared 
to the term base ( | )y t k t  (when this term would be zero, the 
superposition principle would no longer be involved). The 
term 

optimize ( | )y t k t  will be ‘small’ if ( | )u t k t  is small 
(13). Referring to eq. (11), ( | )u t k t  will be small if 

base ( | )u t k t  is chosen ‘close’ to the optimal ( | )u t k t .
This can be realized iteratively, by executing the following 
steps at each controller sampling instant:
1. Initialize base ( | )u t k t  as: 

1 *( | ) ( / 1)baseu t k t u t k t , i.e. the optimal control sequence 
as computed during the previous sampling instant; in other 
words: *( / 1)u t k t  is used as a 1st estimate for *( / )u t k t
2. Calculate 1( | )u t k t  by minimizing eq. (17) 
using simple QP. 
3. Calculate the corresponding 1

optimize ( | )y t k t

with eq. (13) and compare it to 1
base ( | )y t k t , which is the 

result of 1 ( | )baseu t k t
4.1 In case 1

optimizey  is not small enough compared to 
1
basey : re-define base ( | )u t k t  as 
2 1 1( | ) ( | ) ( / )base baseu t k t u t k t u t k t  and go to step 2. 

The underlying idea is that 1 1( | ) ( / )baseu t k t u t k t  - 
which is the optimal ( | )u t k t  for a linear system - is an 

improved estimate for the optimal ( | )u t k t  in case of a 
nonlinear system 
4.2 In case i

optimize ( | )y t k t  is small enough compared to 

base ( | )iy t k t : use ( ) ( | ) ( / )i i
baseu t u t t u t t  as the resulting 

control action of the current sampling instant (i=1,2,…, 
according to the number of iterations). 
This algorithm results after convergence to the optimal 
solution for the underlying nonlinear predictive control 
problem. The number of required iterations depends on how 
far the optimal *( / )u t k t  is away from the optimal 

*( / 1)u t k t . In case no big setpoint changes and no big 
disturbances occur between time instants t-1 and t, this 
number of iterations seems to be very low (1…3). Notice 
that a correct calculation of the local step response 
coefficients along the whole prediction horizon is not 
critical: these coefficients are only used to calculate 

optimize ( | )y t k t , which is driven to zero anyhow. 

4. SIMULATION RESULTS 

Several simulation tests have been carried out to compare 
the standard NMPC with the non-linear EPSAC from the 
point of view of the computation time as well as the 
efficiency.
The sample period is 5 min whereas the other parameters are 
N2={15,15}, Nu={1,1}, ={5,1}, ={0,0}. 
For the manipulated variables, the constraints were fixed to 
umin={2000,7000}, umax={5000,13000} and their changes 
were limited to umin={-150,-1500}; umax={150,1500}. 
The controlled variables are constrained by ymin={0,0} and 
ymax={0.05,0.4}. 
In these simulations it is assumed that the full state 
measurement is available at time tk, i.e. the initial condition 
is known at each iteration. 

Setpoint tracking 
During a simulation time of 4.5 hours, several step changes 
have been considered for both controlled variables. The 
performance obtained by both controllers was similar. For 
shortage of available space only results of one experiment 
are presented. Fig. 3 shows how the controller tries to make 
the molar concentration of ethanol at the bottom of the 
column to track the setpoint change from  0.0225 to 0.0246 
at t=0.2 hours. The response of the second controlled 
variable, the molar concentration of the water at the top of 
the column, to the change of its reference from 0.1809 to 
0.1654 at t=1.8 hours, is represented in Fig. 4. The two 
manipulated variables are represented in Figs. 5 and 6. 
But the associated computational efforts indicate a clear 
advantage of the EPSAC controller. The computation time 
of the whole simulated experiment was almost 12 hours, 
whereas the standard nonlinear controller has taken 
approximately 53 hours. The simulation has been performed 
using the simulation language EcosimPro in a PC PentimIII,  
800 MHz computer with 512 Mbytes of RAM. 
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Fig. 3 Set point tracking of the first controlled variable (molar 
concentration of ethanol at the bottom of the column) 
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Fig. 4 Set point tracking of the 2nd controlled variable (molar 
concentration of water at the top of the column) 
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Fig. 5 The 1st manipulated variable (neutral alcohol flow) 
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Fig. 6 The 2nd manipulated variable (steam inflow to the reboiler)

CONCLUSIONS 

Two non-linear model predictive controllers have been 
compared in a distillation column. One of them the non-
linear EPSAC, based on an iterative linearisation 
approach, has shown to be a promising technique in 
reducing computation time, cutting it to less than a fourth. 
However, in the process considered here, the time 
required to solve the predictive control problem every 
sampling time is still too high to implement the controller 
in real time. 
The proposed method does not require to linearize the 
non-linear model, but only to compute its impulse 
response, which can save a lot of computation in cases 
like the one presented here. 
Another advantage of the non-linear EPSAC refers to the 
use of codes more efficient such as QP instead of  SQP 
methods. Further efforts are required to bring NMPC into 
practice when based on complex models like the one 
presented in this paper. 
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NOMENCLATURE 

M  Liquid mass accumulated on plate (kg). 
L   Liquid flow (kg/s). 
V  Vapour flow (kg/s). 
F  Feed flow (kg/s). 
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S  Lateral extraction (kg/s). 
x  Mol fraction in liquid phase. 
y  Mol fraction of in vapour phase. 
z  Mol fraction in feed current . 
h  Enthalpy of the liquid (kJ/kg). 
H  Enthalpy of the (kJ/kg). 

 Activity coefficient. 
satP  Vapour pressure (bar). 

P  Total pressure (bar) 
P  Pressure drop (bar) 
0V  Flow of live steam in the reboiler (m3/s)

K Constant of proportionality (m3/bar·s)
how  Height of the liquid above the crest of the sink 

(mm) 
Q Liquid which falls from the sink (m3/s)
Lw Length of the sink (m) 

Subscript 

j species 
n stage 
* molar fraction of vapour phase in equilibrium 

with j
nx
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