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3-D electromagnetic scattering analysis of electrically

large dielectric objects using MLFMA

J. De Zaeytijd*

ibstract — In this contribution we use the volume
egral equation (VIE) to model the full-wave elec-
romagnetic scattering from 3-D inhomogeneous di-
electric objects. To reduce the computational cost
and memory requirements the multilevel fast mul-
tpole algorithm (MLFMA) is used. For the ge-
etries, typically encountered in inverse problems,
is is an O(N)-method, N being the number of un-
owns. However, additional efforts are to be made
o reduce the rather large prefactor. This method
nay be a more flexible and competitive alternative
tc the FFT methods. ’

i INTRODUCTION

he first step in solving an inverse scattering prob-
1, in our case a complex permittivity reconstruc-
n, is the choice of a forward-modeling method.
wce we do not want to make any sacrifices con-
ning accuracy, we choose to take the full physics
the electromagnetic scattering from inhomoge-
seous dielectric objects into account, by using the
ume integral equation (VIE). To handle the VIE
sumerically, we can discretize it with a classical
thod of moments (MoM). The inverse problem is
olved by means of a non-linear optimization tech-
ique which leaves us two options. We can either
olve a forward problem in every iteration (when
he cost function is expressed in terms of the di-
ctric contrast only [1]) either use the relation
tween contrast and fields as a constraint in the
ptimization with respect to both fields and con-
trasts [2]. Either way the VIE has to be imposed
everal times and since we discretized it, this comes
down to performing a lot of matrix-vector products.

If this matrix-vector product is carried out with
a full matrix, this requires O(N?) operations. To
re the matrix we need O(N?) memory. This is
o expensive for large problems. The conjugate
adient fast Fourier transform method (CG-FFT)
3! is often used to overcome this burden. This
'z:"thod uses a uniform grid with cuboidal cells to

model the object and then exploits the Toeplitz
J‘operty of the interaction matrix by performing
the matrix-vector product with a 3-D FFT. Also
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there is no need to store the full matrix. This re-
duces the computational complexity to O(NlogN)
and the memory use to O(N).

The FFT methods use the fact that the Green’s
function is in fact a convolution operator. Beyond
this, however, no physical information contained in
this Green’s function is exploited. Fast multipole
methods (FMM)[4] on the other hand use physi-
cal information to a large extent to reduce the cost
of calculating fields radiated by certain sources in
remote observation points. For dense volume scat-
terers (e.g. a quasi-equilateral cuboid), this leads
to an O(N)-algorithm both in computational com-
plexity as in memory use. '

In the following sections we adress the integral
formulation of the scattering problem and give a
brief description of the MLFMA. Next we consider
some extra modifications to reduce the prefactor.
Finally we present a numerical validation and some
further remarks.

2 FORMULATION

The problem will be formulated in the frequency
domain and the time factor e/t will be suppressed.

2.1 Formulation of the VIE

We consider an inhomogeneous dielectric object
with complex permittivity €(r) and permeability 1o
that is situated in an infinite homogeneous back-
ground medium with parameters €p and o, which
we will denote as free space. The incident electric
field e(r) is defined as the field in absence of the
object. Using the equivalence principle, we replace
the dielectric object by a contrast current distribu-
tion in free space

e(r) —
e(r)

Here d is the electric flux density. x(r) will be
called the contrast function. The contrast charge p
is given by p = -—-—V J=-Vx-d-—xV-d. We
now can write the volume integral equation:

d(r)

——= —e*(r),

e(r)

I(r) = w2 2d(r) = jux(r)d@). (1)

ei(r) = )
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where e® is the scattered field, given by:

e’(r) = —jwpo / G(r—r')-I@)dV. (3)

,_1
(&

is the Green’s tensor

e—jkoll‘—l"|

- 1 ( .
=({- kgvv) (m) o (4)

in which kg = w,/€pfip is the wavenumber of free
space. Equation (2) states that the incident elec-
tric field is the difference between the total electric
field and the field generated by the contrast cur-
rents only, the so-called scattered field.

G(r-r)

2.2 Discretization of the VIE

In order to solve (2) numerically, we have to choose
a mesh to model the scatterer and a type of ba-
sis f nction to represent the unknown field. The
MLFMA can be used on all sorts of basis func-
tions with limited support, so the choice of mesh
type is completely free. Suppose we have defined
a mesh and have chosen a set of (vectorial) basis
functions, the n-th of which we will denote as f;,.
On a tetrahedral mesh we could for instance take
she Schaubert-Wilton-Glisson basis functions. We

then write
N
> Dnfa(r),

n=1

d(r) = (5)
where N is the number of unknowns. Furthermore
we take the contrast function x to be constant over
each mesh element.

By substituting (5) into (2) and applying
Galerkin testing, we arrive at a set of N lineair
squations.

2.2.1 MLFMA

Since in classical MoM we have to calculate the
interactions between each pair of basis functions,
we end up with an O(N?2) algorithm if we solve
the system iteratively. The fast multipole method
{FMM) only considers interactions between groups
of basis functions and reduces the computational
cost of the matrix-vector product.

The basis of FMM is formed by the following
expansion of the Green’s tensor [4]:

Gr—r')w~
i’; [ dhemswtemmmy () F- Ry e,
(6)

where k = kolzz and where

L

Ty (k) = Y (=)' (20 + DA (koran ) Pulk - Fax)
=0

™

is called the translation operator. The approxima-
tion in (6) is caused by the truncation of the series

in (7). h}z) is the spherical Hankel function of the

-~

- second kind, P, is the Legendre function of order

l and ryy = ry — ry. In addition ryy > d with
d=(r~r)— (' —rx). Let Sy, be the support of
f,.. Using (6) we can write down the scattered field
due to the current associated with f,, and weighted
with £,:

/ £, eldV =

m

2 -
%Dn / AVEn(r) - / dV'x(")G(r - ') - £5(r')

411;3 / dEDm A (R) - Tax () Un,x (B), (8)

in which
Un,AI =
2 = aa .
’:—gDn /S x(r)e = (T — kk)E.dV' (9)

Dy = / e~k (r—rE 4V (10)
From (8) the principle of FMM can be seen. First
we divide the basis functions into groups, for ex-
ample group Gy, centered around ry,. We then
calculate the radiation pattern Uy, of Gy by sum-
ming the radiation patterns Uy, s for all f, € G.
This involves only single integrals. We then shift
this pattern by multiplication with Tyys to the cen-
ter ry of Gy where it is projected onto the basis
functions by Dy, x. The radiation patterns turn
out to be quasi band limited, which allows us to
reconstruct them using only a minimal amount of
samples k,. If this procedure is repeated for every
pair of groups, the number of operations is reduced
compared to the calculation of every interaction be-
tween pairs of basis functions.

Unfortunately the accuracy of the expansion (6)
breaks down when L grows too large. This is
called the low frequency breakdown and therefore
the used algorithm is a high frequency (HF) FMM.
The breakdown is caused by a numerical instability
when ! exceeds the argument of hl(z). For nearby
groups this happens before the summation in (7)
has converged to the desired accuracy. This means



that we still have to calculate some interactions fol-
lowing the classical MoM-scheme, the so-called near
nteractions. We call the groups for which we can
use the expansion well-separated.

The FMM can be extended to a multilevel algo-
rithm resulting in the MLFMA [4], which yields a
O(N) computational complexity and memory use
in case of dense volume scatterers.

3 REDUCTION OF THE PREFACTOR

The MLFMA has already earned its stripes in prob-
lems involving surface integral equations (SIE). Its
application to the VIE, however, shows some dif-
ficulties, especially in memory use. This is due to
the fact that a volume discretization results in more
unknowns per FMM group than a mesh containing
only surface patches. Since we look at dense vol-
ume scatterers in particular, we end up with a huge
number of unknowns even for problems of moderate
electrical size.

The calculation of the radiation pattern of an
FMM group can be cast into a matrix operation
in which we multiply the vector containing the un-
knowns in the group with a so-called aggregation
matriz. Likewise the projection of the shifted pat-
terns onto the basis functions in another group hap-
pens by multiplication with a disaggregation ma-
¢riz. These matrices have dimensions (Ny X N;)
with N, the number of unknowns in the group and
N, the number of samples needed to represent the
radiation pattern of the group. When Ny is large,
storage of the aggregation and disaggregation ma-
trices requires a lot of memory. Also the interaction
matrices between nearby groups, the near interac-
tion matrices, are large memory consumers. The
memory use is still assymptotically of the form cN,
but the prefactor c¢ is very large.

While the geometry of our specific problem
causes these problems, it also offers a way to solve
em. Indeed, since we are interested in inverse
sroblems, most of the time we don’t know the ex-
ct bounderies of the scatterers. We merely put
hem into a large box and discretize this box with
a mesh which we suppose to be fine enough. We
then can contruct this box or whatever shape we
nse for the inversion domain by building it from
a number of identical blocks stacked in a uniform
grid. These blocks are also the FMM-groups on the
owest level. Since the FMM-groups now all have
xactly the same geometrical appearance, it is pos-
sible to rewrite the aggregation, disaggregation and
near interaction stages using matrices which can be
eused to a large extent. This reduces the prefactor
f the memory use significantly.

o

]
ooow

::}

o

3

-y W e

=]

We already mentioned the fact that the near in-
teraction matrices tend to be large matrices. Also
in a 3-D volumetric FMM there are quite a lot of
near interactions per group. This makes the near
interaction stage {multiplying the near interaction
matrices with the corresponding vectors) the most
time consuming step in the iterations. We cannot
reduce the number of near interactions beyond a
given point due to the breakdown of expansion (6).
Therefore we reduce the workload by performing a
truncated factorization on the near interaction ma-
trices. To this end we can for instance use a singular
value decomposition (SVD) or a rank-revealing QR
factorization (RRQR). For both methods the error
on the truncation is controllable. Suppose we fac-
torize a (m x n)-matrix A into a (m x k)-matrix Q
and a (k x n)-matrix R, with k& < min(m,n). We
then have a gain (mn)/(k(m + n)) both in storing
the matrix and in the cost of multiplying it with a
vector.

4 NUMERICAL VALIDATION

In this section we will present some numerical re-
sults which demonstrate the correctness and effi-
ciency of the method. For all the examples to fol-
low we used a tetrahedral mesh. First of all we
present the time for one matrix-vector multiplica-
tion as a function of the humber of unknowns in fig-
ure 1. The geometry consists of a cube, built from
elementary blocks as depicted in figure 5. In this
case the blocks each contain 736 unknowns. The
background wavelength is taken Ao = 27 m. To
increase the number of unknowns, more blocks are
used. There clearly is a cross-over point with the
classical MoM around N = 10000 and for large N
the O(N) behaviour sets in. In figure 2 the memory
use is given for the same geometries. Clearly clas-
sical MoM would not allow simulation of problems
this big on a simple PC.

Next we show the scattering from a homogeneous
dielectric sphere with radius 1.5)\¢ and permittivity
€ = 2¢q in figure 3. The structure is illuminated by
a plane wave e'(r) = e~/%0#3. The z-component
of the scattered field is measured on a semicircle
with radius r = 10)¢ in the yz-plane. We modeled
the sphere by a spheroidal contrast distribution in a
larger cube. Since our actual approximation to the
sphere is rather spiky (figure 6), we get some dis-
crepancy with the exact Mie-series solution. The
boundaries of a cube can be modeled exactly, so
we present the results for a cube with side 4X¢ in
figure 4 were the comparison is made with the so-
lution obtained with a weak form BCGS-FFT code
[5],(6},(7}.

It has to be noted that for the geometries con-
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sidered here (which are dense volume scatterers)
the FFT-method is still much faster. However, our
method offers more flexibility since the scatterer (or
multiple scatterers) can be modeled with an arbi-
trary stacking of elementary mesh blocks whereas in
the FFT code, the object has to be enclosed in one
large cuboidal box. One could divide this box fur-
ther into smaller identical boxes to obtain the same
kind of flexibility and consider the interactions be-
tween these boxes also by using FFT’s. However,
when two such boxes are well-separated it is ad-
vantageous to use the FMM in order to physically
reduce the needed information. Currently, we are
working on a further reduction of the cost of the
near interaction stage. We strongly believe that
the methods can be made competitive.

~#= MLFMA accuracy le—5
== classical MoM
~O- MLFMA accuracy 1e-6

100
Number of unknowns

3 4

Figure 1: Time for 1 matrix-vector multiplication
versus the number of unknowns. The different
curves correspond to a different accuracy.

= MLFMA accuracy le—5
=O- MLFMA accuracy le-6
== classical MoM

2

y

Memor

10 ! A ;5 l

Number of unlénowns
Figure 2: Memory requirements.
5 CONCLUSIONS

We have solved the VIE by using the HF MLFMA.
Compared to the CG-FFT and related methods this

T ~— Mie series solution
x MLFMA

35

Figure 3: Scattering from the dielectric sphere of
figure 6 with € = 2ep: |e;| as a function of § for
¢ =0 and r = 10)p. Comparison with Mie series.

— CG—FFT
x MLFMA

lez|[V/m]

35

Figure 4: Scattering from a dielectric cube with
€ = 2¢p: |es| as a function of @ for ¢ = 0 and
r = 10)\;. Comparison with result from a Weak
Form BCGS-FFT.

Figure 5: Elementary block of mesh. Sizes in [m].
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igure 6: Approximation of sphere with radius
5. )
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has the advantages of a more flexible modeling of
the scatterers and a physical reduction of the work-
load. Moreover it reduces the computational com-
plexity to O(N) in case of dense volume scatterers

which are encountered frequently in inversion prob-
lems.
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