

Outcoupling in 1D: geometrical optics

Total internal reflection
for $\theta>\theta_{c}$
critical angle θ_{c}

$$
\sin \theta_{c}=\frac{n_{s}}{n_{e}}
$$

$$
\begin{aligned}
& \text { Introduction: outcoupling efficiency } \\
& \text { outcoupling efficiency }=\frac{\text { emitted light }}{\text { generated light }}
\end{aligned}
$$

Generated light:
absorbed

$$
\left\{\begin{array}{l}
\text { absorbed light } \\
\text { trapped light } \\
\text { emitted light }
\end{array}\right.
$$

Outcoupling in 1D: geometrical optics

Coupling efficiency into the substrate

$$
\begin{aligned}
\eta & =\frac{1}{2}\left(1-\cos \theta_{c}\right) \\
& =\frac{1}{2}\left(1-\sqrt{1-\left(\frac{n_{s}}{n_{e}}\right)^{2}}\right)
\end{aligned}
$$

for $n_{e}=1.8$
for $n_{s}=1.5: \quad \eta=22.4 \%$ Whanannore

> The remainder of this paper is not included as this paper is copyrighted material. If you wish to obtain an electronic version of this paper, please send an email to bib@elis.UGent.be with a request for publication P107.098.pdf.

