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Abstract

In this paper, we analyze a discrete-time priority queue
with session-based arrivals. We consider a user population,
where each user can start and end sessions. Sessions be-
long to one of two classes and generate a variable number
of fixed-length packets which arrive to the queue at the rate
of one packet per slot. The lengths of the sessions are gen-
erally distributed. Packets of the first class have transmis-
sion priority over the packets of the other class. The model
is motivated by a web server handling delay-sensitive and
delay-insensitive content. By using probability generating
functions, some performance measures of the queue such as
the moments of the packet delays of both classes are calcu-
lated. The impact of the priority scheduling discipline and
of the session nature of the arrival process is shown by some
numerical examples.

1 Introduction

Head-Of-the-Line (HOL) priority scheduling is one of
the main scheduling types in network buffers to diversify
the delay of traffic streams with different delay require-
ments. With this scheduling discipline, as long as delay-
sensitive high-priority packets (packets of voice and video
streams, gaming, . . . ) are present in the buffer, they are
transmitted. Best-effort low-priority packets can thus only
be transmitted when no high-priority traffic is present. An-
other reason why one would like to diversify the delay char-
acteristics of different applications is because one applica-
tion may provide revenues for the provider while another
does not (or to a lesser extent). It is then natural to give
priority to the packets of the first application.

In the related literature, there have been a large number
of contributions with respect to the analysis of HOL prior-
ity queues. In particular, discrete-time HOL priority queues
with deterministic service times equal to one slot have been
studied in [12, 14, 16, 19]. The steady-state buffer content

and delay in the case of a multiserver queue with general
independent arrivals are studied in [12]. Mehmet Ali and
Song [14] analyze the buffer content in a multiplexer with
two-state on-off sources. The steady-state buffer content
and the delay for Markov modulated high-priority interar-
rival times and geometrically distributed low-priority inter-
arrival times are analyzed in [16]. Walraevens et al. [19]
study the steady-state buffer content and packet delay, in
the special case of an output queueing switch with Bernoulli
arrivals.

In this paper, we consider an arrival process induced by
a two-layered structure. Sessions are started and terminated
by users on the higher layer. These sessions inject trains
of packets in the network. Since we perform a discrete-
time analysis, we assume time is divided into slots of equal
length and we assume that packets of a session arrive to the
queue at the rate of one packet per slot. Note that this two-
layered structure introduces time correlation in the packet
arrival process. Indeed, since the packets in a session ar-
rive in consecutive slots, the number of packet arrivals in
one slot depends on the number of arrivals in previous slots.
Session-based arrival processes are an adequate choice to
model, e.g., the common segmentation of data files into
packets before their transmission through a telecommuni-
cation network [8, 10].

In particular, the suggested arrival process is an ideal
candidate to model the output buffer of a web server [9].
A web server is a computer system that accepts requests
from users for a certain web page or embedded file and that
responds by sending the requested file to the user. Traf-
fic generated by a web server towards its output buffer can
be described by a session-based arrival process. Moreover,
if there is content on the web pages that is delay-sensitive,
for instance multimedia content, priority can be given to
the transmission of files containing this content over other
downloads [24]. In the case of an e-commerce web server,
it makes also sense to prioritize the downloads on a (poten-
tial) revenue base [17], that is, to give priority to the trans-
mission of packets of content that is likely to provide (large)
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revenues.
First-In-First-Out (FIFO) queues with session-based ar-

rivals are analyzed in [1, 2, 5, 6, 21, 22]. Somewhat related
on/off-type arrival models are considered in [7,11,23], also
for the FIFO case. Further in [4], sessions consisting of a
fixed number of packets are considered in case of an uncor-
related packet arrival process. In view of the importance of
priority scheduling in multimedia networks, HOL priority
queues with session-based arrivals and either deterministic
or geometric session lengths are studied in [3] and [20] re-
spectively.

In the current paper, we further extend the previous anal-
yses to a discrete-time priority queue with session-based ar-
rivals and generally distributed session lengths. The dis-
tributions of the session lengths may be class-dependent,
which reflects that different priority classes represent dif-
ferent applications. We analyze the buffer contents (i.e., the
number of packets in the buffer) as well as the packet de-
lays (i.e., the number of slots a packet stays in the buffer) of
both the high-priority and low-priority class using probabil-
ity generating functions (pgfs). In contrast with the specific
session-length distributions studied in the past (see [3, 20]),
an infinite-dimensional state vector has to be defined when
dealing with generally distributed session lengths. This
combined with the priority scheduling makes the analysis
of the low-priority buffer content and packet delay far from
straightforward. Nevertheless, closed-form formulas for the
means of these stochastic variables (and in most cases also
for higher moments) can be found by means of the analysis
technique developed in this paper.

The remainder of the paper is structured as follows. In
the next section, we present the mathematical model. In sec-
tion 3, we construct a functional equation. This functional
equation is the starting point of the analysis of the steady-
state buffer content and packet delay, described in sections
4 and 5 respectively. Some numerical examples are treated
in section 6, while we conclude this paper in section 7.

2 Queueing model

We consider a discrete-time single-server system with in-
finite buffer space. Time is assumed to be slotted. There
are two types of sessions, namely sessions of class 1 and
sessions of class 2. The numbers of newly generated class-
j sessions during consecutive slots are i.i.d. (independent
and identically distributed). The numbers of newly gener-
ated class-1 and class-2 sessions during slot k are denoted
by b1,k and b2,k respectively. Their joint pgf is defined as

B(z1, z2) � E
[
z

b1,k

1 z
b2,k

2

]
. Note that the numbers of ses-

sions of both classes generated during a slot may be cor-
related. The corresponding marginal pgfs are denoted by
Bj(z) (j = 1, 2) and are given by B(z, 1) and B(1, z) re-

spectively.
Each class-j session lasts a random number of slots

which is assumed generally distributed with pgf Lj(z) and
probability mass function (pmf) lj(i), j = 1, 2, i ≥ 1. The
packets of a session arrive back-to-back at the rate of one
packet per slot. For further use, we define pj(n) as the
probability that a class-j session that is going on for n slots
continues at least one more slot, i.e.,

pj(n) � 1 −∑n
i=1 lj(i)

1 −∑n−1
i=1 lj(i)

. (1)

The total numbers of class-1 and class-2 packets arriving
during slot k are denoted by a1,k and a2,k respectively and
their joint pgf is defined as Ak(z1, z2) � E

[
z

a1,k

1 z
a2,k

2

]
.

The transmission times of the packets equal one slot and
per slot one packet is transmitted (if there is any).

Packets of class 1 have HOL priority over packets of
class 2. This means that as long as there are class-1 packets
in the buffer, they are transmitted. A class-2 packet can only
be transmitted when there are no class-1 packets present.

On average B′
j(1) class-j sessions are started in a ran-

dom slot, each generating on average L′
j(1) packets. There-

fore the load generated by class-j packets equals

ρj =B′
j(1)L′

j(1), (2)

j = 1, 2. We assume a stable system, i.e., the total load is
smaller than 1:

ρT � ρ1 + ρ2 = B′
1(1)L′

1(1) + B′
2(1)L′

2(1) < 1. (3)

3 Functional equation

In this section, we first construct a Markov chain descrip-
tion of the system. The arrival process is summarized by the
random variables ej,n,k , representing the number of class-j
sessions that deliver their n-th packet during slot k. Indeed,
the following relationships clearly hold:

ej,1,k = bj,k;
ej,n+1,k =

∑ej,n,k−1
i=1 c

(i)
j,n,k−1, n ≥ 1,

(4)

j = 1, 2. For a given n, the c
(i)
1,n,k−1’s are i.i.d. random vari-

ables with values 0 or 1. The same holds for the c
(i)
2,n,k−1’s.

The random variable c
(i)
j,n,k−1 equals 1 iff the i-th active ses-

sion of class j that has sent the n-th packet during slot k−1
continues to send a packet in the next slot. The variable
aj,k, the total number of class-j packets arriving during slot
k, can be expressed as

aj,k =
∞∑

n=1

ej,n,k, j = 1, 2. (5)



We further denote the buffer content of class-1 packets and
class-2 packets at the beginning of slot k by u1,k and u2,k

respectively. The following system equations then directly
follow from the HOL priority scheduling of class-1 packets
over class-2 packets:

u1,k+1 = [u1,k − 1]+ + a1,k;
u2,k+1 = [u2,k − 1u1,k=0]+ + a2,k,

(6)

where [.]+ denotes the maximum of the argument and 0 and
with 1X the indicator function of X .

A Markovian state description of the system is given by
(e1,1,k−1, e1,2,k−1, . . . , u1,k, e2,1,k−1, e2,2,k−1, . . . , u2,k)
and equations (4)-(6) fully describe the behavior of the
system. We introduce the joint pgf of the state vector:

Pk(x1,1, x1,2, . . . , z1,x2,1, x2,2, . . . , z2)

�E


 2∏

j=1

( ∞∏
n=1

x
ej,n,k−1
j,n

)
z

uj,k

j


 .

It follows that

Pk+1(x1,1, x1,2, . . . , z1, x2,1, x2,2, . . . , z2) =

E




 2∏

j=1

∞∏
n=1

(xj,nzj)
ej,n,k


 z

[u1,k−1]+

1 z
[u2,k−1u1,k=0]+

2




= B(x1,1z1, x2,1z2)

×

E




 2∏

j=1

∞∏
n=1

(Cj,n(xj,n+1zj))ej,n,k−1




× z
[u2,k−1]+

2 1u1,k=0

]

+ E




 2∏

j=1

∞∏
n=1

(Cj,n(xj,n+1zj))ej,n,k−1




× z
u1,k−1
1 z

u2,k

2 1u1,k>0

]}
,

by using the system equations (4)-(6) and by taking into
account that b1,k and b2,k are statistically independent of
the other random variables involved. Here,

Cj,n(z) �E
[
zc

(i)
j,n,k−1

]
= 1 − pj(n) + pj(n)z, (7)

n ≥ 1, j = 1, 2. This follows from the fact that the
c
(i)
j,n,k−1’s are Bernoulli distributed random variables as

mentioned before. We now use the property that a system
void of class-j packets at the beginning of a slot implies that
no class-j packets arrived in the system during the previous

slot. Or in other words, using that aj,k−1 = 0 - or equiva-
lently that ej,n,k−1 = 0 for all n - if uj,k = 0, we find

P (x1,1, x1,2, .., z1, x2,1, x2,2, .., z2)

=
B(x1,1z1, x2,1z2)

z1z2
[z1(z2 − 1)P (0, . . . , 0) + z2× (8)

P (C1,1(x1,2z1), C1,2(x1,3z1), .., z1, C2,1(x2,2z2), .., z2)
+ (z1 − z2)P (0, .., 0, C2,1(x2,2z2), C2,2(x2,3z2), .., z2)].

with P the limiting function of Pk and Pk+1 for k → ∞.
The functional equation (8) contains all information con-
cerning the steady-state behavior of the system, although
not in a transparent form. Nevertheless, several explicit re-
sults can be derived from it, which is the subject of the fol-
lowing sections. For future reference, we end this section
with the definition of some joint pgfs concerning the class-
1 and the total system content:

P1(x1, x2, .., z) �P (x1, x2, .., z, 1, .., 1),
PT (x1,1, x1,2, ..,x2,1, x2,2, .., z)

�P (x1,1, x1,2, .., z, x2,1, x2,2, .., z),

and the corresponding functional equations:

P1(x1, x2, .., z) =
B1(x1z)

z
[(z − 1)P1(0, .., 0) (9)

+ P1(C1,1(x2z), C1,2(x3z), .., z)],

PT (x1,1, x1,2, .., x2,1, x2,2, .., z)

=
B(x1,1z, x2,1z)

z
[(z − 1)PT (0, .., 0) (10)

+ PT (C1,1(x1,2z), C1,2(x1,3z), .., C2,1(x2,2z), .., z)].

4 Buffer content

For general (x1,1, x1,2, .., z1, x2,1, x2,2, .., z2), the func-
tional equation (8) is hard to solve. Therefore, we solve it
for a specific set of these arguments and discuss how mo-
ments of the buffer content are calculated.

4.1 Solving the functional equation

We here select only those values of xj,n and zj , n ≥
1, j = 1, 2, for which the P -functions on both sides of equa-
tion (8) have identical arguments (when non-zero), i.e., we
choose xj,n = Cj,n(xj,n+1zj) for j = 1, 2, n ≥ 1. By
using (1) and (7) in this expression, xj,n can be solved in
terms of zj . Denoting this solution by χj,n(zj), we find

χj,n(zj) =

∑∞
i=n lj(i)zi−n

j

1 −∑n−1
i=1 lj(i)

, n ≥ 1. (11)



In particular, we have that χj,1(zj) = Lj(zj)/zj and
χj,n(1) = 1, n ≥ 1. Choosing xj,n = χj,n(zj) in (8),
we obtain

P (χ1,1(z1), χ1,2(z1), .., z1, χ2,1(z2), χ2,2(z2), .., z2)

=
B(L1(z1), L2(z2))

z2 [z1 − B(L1(z1), L2(z2))]
[z1(z2 − 1)P (0, .., 0)

+ (z1 − z2)P (0, .., 0, χ2,1(z2), χ2,2(z2), .., z2)].

P (χ1,1(z1), χ1,2(z1), .., z1, χ2,1(z2), χ2,2(z2), .., z2) can
be fully determined by applying Rouché’s theorem and the
normalization condition, as is e.g. done in [20]. This leads
to

P (0, .., 0, χ2,1(z2), χ2,2(z2), .., z2)

=
Y (z2)(z2 − 1)P (0, .., 0)

z2 − Y (z2)
P (0, .., 0) =1 − ρT

and finally

P (χ1,1(z1), χ1,2(z1), .., z1, χ2,1(z2), χ2,2(z2), .., z2)

(12)

=(1 − ρT )
B(L1(z1), L2(z2))(z2 − 1)
z1 − B(L1(z1), L2(z2))

z1 − Y (z2)
z2 − Y (z2)

,

with Y (z) implicitly defined as

Y (z) �B(L1(Y (z)), L2(z)), |Y (z)| < 1 if |z| < 1.
(13)

Expression (12) can also be explained as follows: expres-
sion (11) denotes the pgf of the number of remaining pack-
ets that a class-j session sends after its n-th packet. In-
deed, this session lasts for i slots with probability lj(i)/(1−∑n−1

m=1 lj(m)), i = n, ..,∞. The left-hand side of expres-
sion (12) thus equals the joint pgf of the buffer contents of
both classes at the beginning of a slot in the steady state
augmented with all packets of sessions that are already on-
going in the previous slot but which have not yet arrived. It
is then observed that these quantities equal the buffer con-
tents in a system with the same generation process of ses-
sions but where all packets of a session arrive simultane-
ously in its slot of generation, i.e., when observing a system
with batch arrivals instead of the one with train arrivals.
This can be understood by noting that when an identical
generation process of sessions is applied the service process
of both systems is identical. (Note further that this would no
longer be the case if the model was extended to e.g. not nec-
essarily back-to-back packet arrivals in a session.) Such a
priority queue with batch arrivals has already been analyzed
in [19], leading to expression (12).

4.2 Performance measures

By substituting x1,n and x2,n (n ≥ 1) by 1 in expression
(8) a functional equation is found for the joint pgf of the
buffer content of both classes. It does not seem to be pos-
sible to derive an explicit expression for this pgf from this
functional equation. However, all moments of the class-
1 and the total buffer content as well as the mean of the
class-2 buffer content can be calculated from the results of
subsection 4.1. The moments of the class-1 content can be
calculated from (9) and (12) with z2 = 1 (by taking appro-
priate derivatives, for more details on this we refer to [22]).
Similarly, the moments of the total buffer content are calcu-
lated from (10) and (12) with z1 = z2. The mean class-2
buffer content is finally calculated as the difference between
the mean total buffer content and the mean class-1 content.

Obtaining higher moments of the class-2 buffer content
is still an open issue at the moment, since the dependency
between the class-1 and class-2 buffer contents influences
these. As discussed before, we are not able to character-
ize this dependency. However, we show in the following
section that this does not prohibit us from obtaining the mo-
ments of the low-priority packet delay.

5 Packet delay

The delay of a packet is defined as the number of slots
between the end of the packet’s slot of arrival and the end of
its departure slot (thus excluding its arrival slot and includ-
ing its departure slot). Within each class, we assume that
packets are transmitted in the order of their arrival. Recall
that class-1 packets have HOL priority over class-2 packets.
We analyze the class-1 and class-2 packet delays separately
in the remainder of this section.

5.1 Class-1 packet delay

The analysis of the class-1 packet delay is rather easy
once the observation is made that transmission of class-1
packets is not influenced by class-2 packets in the system,
due to the HOL priority scheduling discipline. Due to a dis-
tributional form of Little’s law being applicable here [18],
D1(z), the pgf of the class-1 packet delay in the steady state,
is expressed in terms of the pgf P1(1, .., z) of the buffer con-
tent of class 1 at the beginning of a random slot, as follows:

D1(z) =
P1(1, .., z) − 1 + ρ1

ρ1
. (14)

We may thus derive the moments of the class-1 packet delay
from the moments of the class-1 system content. E.g., the
mean class-1 packet delay E[d1] is given by

E[d1] =1 +
ρ1B

′
1(1)L′′

1(1) + B′′
1 (1)(L′

1(1))2

2ρ1(1 − ρ1)
.



5.2 Class-2 packet delay

The analysis of the steady-state class-2 packet delay is
more involved, because of the HOL priority discipline. We
tag a random class-2 packet and denote it by Q2. We de-
note the slot during which Q2 arrives by S2. We first make
the following key observation: if a class-1 packet is trans-
mitted before Q2, all packets of the same session of this
class-1 packet are transmitted before Q2 as well. Indeed,
only other class-1 packets can be transmitted between the
transmissions of two randomly chosen packets of a same
class-1 session.

Furthermore, we denote the number of class-1 sessions
that have sent their n-th packet during slot S2 by e∗1,n, and
the total system content at the beginning of the following
slot by u∗

T . Furthermore, let r2 indicate the number of pack-
ets arriving during slot S2 and to be transmitted after packet
Q2. Before writing down an expression for and analyzing
the delay of Q2, we first concentrate on the virtual delay w2

of Q2. This virtual delay is here defined as the delay when
no new sessions are generated after slot S2. Then w2 equals

w2 =u∗
T − r2 +

∞∑
n=1

e∗
1,n∑

i=1

l+1,n,i, (15)

with l+1,n,i the number of packets arriving after slot S2 of
the i-th class-1 session that generated its n-th packet during
slot S2. The virtual delay thus equals the superposition of
the buffer content just after slot S2 and to be transmitted
no later than Q2 and the packets that arrive after slot S2

of class-1 sessions which were already generating a packet
during slot S2. Note that the l+1,n,i’s are all independent of
the system state just after slot S2. Their pgf is given by
χ1,n(z) (see (11)). With the definition

Q(x1, x2, .., y, z) �E

[( ∞∏
n=1

x
e∗
1,n

n

)
yr2zu∗

T

]
,

expression (15) leads to the pgf of w2:

W2(z) �E[zw2 ] = Q(χ1,1(z), χ1,2(z), .., 1/z, z). (16)

Relating the buffer content distribution just after the arrival
slot of a random class-2 packet to the buffer content distri-
bution at the beginning of a random slot (i.e., a manifesta-
tion of the typical renewal-theory paradox, see e.g. [15]),
we find

Q(x1, x2, .., y, z)

=
PT (x1, x2, .., 1, .., z) − PT (x1, x2, .., y, .., z)

ρ2(1 − y)
,

(17)

with PT the function calculated in section 4.

We now relate the delay d2 and the virtual delay w2 of
packet Q2. Obviously, the virtual delay is an integral part
of the delay. During the transmission of a certain packet,
say P , belonging to the virtual delay workload, new class-1
sessions may be generated, the transmission of their packets
adding to the delay of Q2. During the transmission of the
packets of these class-1 sessions new class-1 sessions may
in turn be generated, which further add to the delay of Q2,
etc. The total number of all packets of all these sessions
(including packet P itself) is called the sub-busy period ini-
tiated by P . Summarizing, we can write

d2 =
w2−1∑
i=1

v1,i + 1, (18)

with v1,i the sub-busy period added by the i-th packet of the
virtual delay workload. Note that these v1,i’s are all i.i.d.
with pgf denoted by V1(z). By z-transforming expression
(18), we then obtain

D2(z) �E[zd2 ] =
zW2(V1(z))

V1(z)
.

Using (16), we find

D2(z) =
zQ(χ1,1(V1(z)), χ1,2(V1(z)), .., 1/V1(z), V1(z))

V1(z)
.

(19)

The use of (17) in the latter expression provides us with
an expression for D2(z) in terms of the PT -function and
V1(z). The PT -function is characterized in sections 3 and
4. So what remains is the calculation of the function V1(z).

In order to do so, we note that the v1,i’s in expression
(18) can be expressed as

v1,i =1 +
b1,i∑

m=1

l
(m)
1,i∑

n=1

v
(m,n)
1,i , (20)

with b1,i the number of new class-1 sessions generated dur-
ing the transmission of the i-th packet of the virtual delay
workload, l

(m)
1,i the number of packets the m-th session of

b1,i contains and v
(m,n)
1,i the sub-busy period initiated by the

n-th packet of the m-th session of b1,i. Indeed, a sub-busy
period initiated by a packet consists of the transmission slot
of that packet and the sub-busy periods of all packets of
all sessions that are generated during that slot. Note that
the v

(m,n)
1,i ’s are i.i.d. having the same pgf as the v1,i’s, i.e.,

V1(z). Expression (20) then leads to the following implicit
expression for V1(z):

V1(z) =zB1(L1(V1(z))). (21)

Although this does not lead to an explicit formula for V1(z),
its derivatives in z = 1 can be explicitly calculated due to
the knowledge that V1(1) = 1, since V1(z) is a pgf.



Expression (19) combined with expressions (17) and
(21) enables us to calculate the moments of the class-2
packet delay as functions of (partial) derivatives of the PT -
function, evaluated for all arguments equal to 1. We have
argued in the previous section that these derivatives can be
calculated. In general, the calculations of the moments of
the class-2 delay are however highly complex, since several
partial derivatives of PT have to be calculated, which is a
non-trivial task. For instance, the first derivative of expres-
sion (19) evaluated in z = 1 leads to an expression contain-
ing (partial) derivatives of χ1,m, V1 and PT . These deriva-
tives can in turn be calculated from expressions (11), (21)
and (10) and (12) respectively. The following final expres-
sion for the mean class-2 packet delay can then be obtained

E[d2] = 1 +
ρT L′′

2(1)
2L′

2(1)(1 − ρT )
+

B′′
2 (1)L′

2(1)
2B′

2(1)(1 − ρT )

+

∂2B

∂z1∂z2
(1, 1)L′

1(1)

B′
2(1)(1 − ρT )

+
B′

1(1)L′′
1(1) + B′′

1 (1)(L′
1(1))2

2(1 − ρ1)(1 − ρT )
.

Higher moments of the class-2 packet delay can be calcu-
lated as well.

6 Numerical examples

We illustrate our findings by means of a numerical ex-
ample. We assume that class-1 and class-2 sessions are both
generated according to independent Poisson processes with
means λ1 and λ2 respectively. We thus have

B(z1, z2) =eλ1(z1−1)eλ2(z2−1).

We are primarily interested in the influence of the variability
of the session lengths on the performance of the system, i.e.
on the mean packet delays of both classes (for the influence
of the mean session lengths we refer to [3, 20]). Therefore,
we firstly consider the example of negative binomially dis-
tributed class-j session lengths with parameters mj and pj ,
i.e., with pgf

Lj(z) =
(

pjz

1 − (1 − pj)z

)mj

.

By decreasing mj while keeping E[lj ] = L′
j(1) = mj/pj

constant, the variance of the session lengths Var[lj ] =
mj(1 − pj)/p2

j can be increased while the mean value is
kept constant. It may be noted that mj = 1 corresponds
to a geometric distribution, while pj = 1 corresponds to
deterministic session lengths.

Throughout this section, we consider the high-priority
load to be a quarter of the total load, i.e., α � ρ1/ρT =
0.25. The means of the session lengths equal 16 slots for
both classes.
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Figure 1. Mean packet delays of both classes
versus the total load for α = 0.25, E[l1] = 16,
E[l2] = 16 and m2 = 2.
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Figure 2. Mean packet delays of both classes
versus the total load for α = 0.25, E[l1] = 16,
E[l2] = 16 and m1 = 2.

In Figure 1 (Figure 2 respectively), we depict the mean
delays of packets of both classes as functions of the total
load ρT when m2 = 2 (m1 = 2 respectively) and for vary-
ing m1 (m2 respectively). Firstly, it can be concluded from
these figures that priority scheduling indeed differentiates
the delay characteristics of both classes. Secondly, we see
that the mean delays of packets are influenced by the vari-
ance of the session lengths of their own class. Thirdly, it is
shown that the mean delay of low-priority packets is also in-
fluenced by the variance of the high-priority session lengths,
although not as much as by the variance of the lengths of
the sessions of its own class. Obviously, the high-priority
packet delay does not depend on the low-priority arrival
process.

In the first two figures, we showed the mean delays when
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Figure 3. Relative deviation of the mean
class-2 delay versus the total load for α =
0.25, E[lj] = 16, Var[lj] = Kj(162 − 16),
j = 1, 2 and K1 = K, K2 = 1.

the variance of the session lengths was less than or equal
to the variance of geometrically distributed session lengths
(with the same mean value). To conclude, we show the im-
pact of higher variances of the session lengths in Figures
3 and 4. In Figure 3, the class-2 session lengths are geo-
metrically distributed, while the variance of the class-1 ses-
sion lengths is assumed to equal K1(162 − 16). The rela-
tive deviation of the mean class-2 packet delay, defined as
(E[d2]K1=K − E[d2]K1=1)/E[d2]K1=1, is plotted for sev-
eral values of K. Note that the reference case K = 1 cor-
responds to the geometric distribution. The case K = 0
corresponds to the deterministic case while K > 1 cor-
responds to distributions that have a larger variance than
the geometric one. Note that a variance with K > 1 can
easily be constructed by using a mix of geometric distri-
butions. In Figure 4, the class-1 session lengths are geo-
metrically distributed and the variance of the class-2 ses-
sion lengths is assumed to equal K2(162 − 16). Now, the
relative deviation (E[d2]K2=K −E[d2]K2=1)/E[d2]K2=1 of
the mean class-2 packet delay is plotted for several val-
ues of K. We once again see from both plots that the
variances of the class-1 and class-2 session lengths have
a non-negligible impact on the mean class-2 delay. Fur-
thermore, we may conclude from Figure 4 that in this case
E[d2]K2=K = C(K).E[d2]K2=1, with C(K) nearly inde-
pendent of the total load when the load is high. This is not
the case when the high-priority lengths are varied. A linear
relation between the relative deviation and K can still be
envisaged though.
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Figure 4. Relative deviation of the mean
class-2 delay versus the total load for α =
0.25, E[lj] = 16, Var[lj] = Kj(162 − 16),
j = 1, 2 and K1 = 1, K2 = K.

7 Conclusions

In this paper, we studied a discrete-time two-class pri-
ority queue with a two-layered arrival process. Packets of
variable-length sessions of both classes arrive to the sys-
tem at the rate of one packet per slot. The session lengths
may have a general distribution. Since the arrival process
is fairly general, the analysis is obviously non-trivial. Us-
ing probability generating functions, we have shown that
explicit closed-form expressions for the mean values of the
system contents and packet delays of both classes can be
derived, as well as higher moments for the packet delays
of both classes. We have finally shown the influence of the
variance of the session lengths of both classes on the mean
(low-priority) packet delay through some numerical exam-
ples.

This research can be extended in different ways. A non-
exhaustive list is a) the calculation of tail probabilities of
the packet delay, which is non-trivial for priority queues,
see e.g. [12, 13]; b) the analysis of the session delay and c)
the analysis of a model where the packets in a session do not
necessarily arrive back-to-back, which would highly com-
plicate the analysis since we used this assumption several
times in this paper.
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