
The OAI-PMH Static Repository and Static Repository
Gateway

Patrick Hochstenbach
Los Alamos National Laboratory

Research Library, Prototyping Team
 Los Alamos, NM 87545-1362

1 (505) 6674448

hochsten@lanl.gov

Henry Jerez
Los Alamos National Laboratory

Research Library, Prototyping Team
Los Alamos, NM 87545-1362

1 (505) 6674448

hjerez@lanl.gov

Herbert Van de Sompel
Los Alamos National Laboratory

Research Library, Prototyping Team
Los Alamos, NM 87545-1362

1 (505) 6674448

herbertv@lanl.gov

ABSTRACT
Although the OAI-PMH specification is focused on making it
straightforward for data providers to expose metadata, practice
shows that in certain significant situations deployment of OAI-
PMH conformant repository software remains problematic. In
this paper, we report on research aimed at devising solutions to
further lower the barrier to make metadata collections harvestable.
We provide an in depth description of an approach in which a
data provider makes a metadata collection available as an XML
file with a specific format – an OAI Static Repository – which is
made OAI-PMH harvestable through the intermediation of
software – an OAI Static Repository Gateway - operated by a
third party. We describe the properties of both components, and
provide insights in our experience with an experimental
implementation of a Gateway.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Standards; System issues

General Terms
Design, Experimentation, Standardization

Keywords
OAI-PMH, metadata harvesting

1. INTRODUCTION
Throughout the different stages that led to the release of version 2
of the Open Archives Protocol for Metadata Harvesting (OAI-
PMH) [3, 4, 7, 13, 14, 15], a strong emphasis has been put on
devising a specification for metadata harvesting that is
straightforward to implement. It is fair to state that, whenever a
choice had to be made, the consecutive specifications have
favored making it easy for data providers to expose their metadata
collections through the protocol instead of for service providers
that harvest the exposed metadata. The origin of that bias lies

with the Santa Fe Convention of the Open Archives Initiative [7]
that aimed at achieving a level of interoperability across
repositories of electronic preprints through metadata harvesting.

Recognizing that existing preprint repositories were grass root
initiatives operating with quite limited resources, and that new
initiatives in that realm would probably operate under similar
modest circumstances for some time to come, those involved in
the discussions leading to the Santa Fe Convention [13] decided
in favor of ease of implementation at the end of the preprint
repositories. This strategy was expected to make the barrier to
actually exposing metadata through the protocol as low as
possible, and eventually increases the impact of preprint-based
communication on the scholarly communication system [2].

Nevertheless, for some data providers holding interesting
metadata collections, implementation of the protocol has
remained problematic. This was first recognized after the release
of version 1 of the OAI-PMH, in the context of the Open
Language Archives Community (OLAC) project [10]. Several
participants in that project wanted to contribute – sometimes
small but nevertheless important – metadata collections to the
OLAC environment but were unable to do so because of the OAI-
PMH-based OLAC strategy. Implementation of the OAI-PMH
was not feasible for several OLAC participants, and the reasons
ranged from lack of technical expertise, to system administrators
having security concerns about operating an OAI-PMH gateway
against an enterprise database, to the cost of implementing the
protocol being disproportional to the size of the metadata
collection to be exposed.

Practice has shown that these problems exist beyond the OLAC
Community. In many cases, union catalog projects include
participants that are not in a position to operate elaborate software
environments, and therefore currently rely on tools such as ftp to
add their collection to the central catalog. Also, ideas have been
brought forward to trigger duplication of new content in the
LoCKSS framework [9] by exposing metadata about that content
through the OAI-PMH. It is anticipated that some smaller
publishers contributing to the LoCKSS environment will not be
able to collaborate in such an OAI-PMH triggered scheme
because the technical barrier is too high for them. And, some
organizations that are well known in the digital library
community make use of web-servers provided by ISPs that do not
allow the installation of third party software. Therefore, these
organizations cannot share the metadata of their publications
through the OAI-PMH.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL ’03, May 1-2, 2003, Houston, Texas.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

So, it seems that – irrespective of the bias in the OAI-PMH that
favors ease of implementation for data providers – the barrier to
expose metadata through the OAI-PMH remains too high in
certain, non-marginal circumstances. Therefore, we have
conducted research to devise an approach that further lowers the
barrier to sharing metadata collections through the OAI-PMH.

2. DIRECTIONS EXPLORED
The focus of our research was on delivering an OAI-PMH
solution for data providers that are not in a position to operate
special software in order to share their metadata collections with
harvesters. This focus immediately led to devising solutions by
which metadata collections are made accessible as flat files, not
databases. And, given that all responses in the OAI-PMH are
XML files, this focus narrowed to finding a solution in which a
data provider uses an XML file as the container of its metadata
collection. Our research led into two quite distinct directions:

• The autonomous data provider approach: In this approach,
data providers make an XML file that adheres to an XML
Schema created for this purpose available on a Web server,
and place an XSL style sheet on that Web server to handle
the responses to incoming OAI-PMH requests. Because data
providers operating in this mode all use the same format for
their XML file, they share a single XSL style sheet. This
work led to the insight that, in order to be easily deployable,
native support of XSLT in the data provider’s Web servers is
required. Such support is currently not available by default.
Also, experimentation revealed that an implementation of
this approach that solely relies on XSLT processing to
respond to OAI-PMH requests requires features that are only
available in XSL version 2. That specification is currently in
a W3C Working Draft status, and conformant tools must be
considered experimental. Both insights led us to conclude
that, while definitely promising, this track was not mature for
actual deployment to our low-barrier target group.

• The dependent data provider approach: In this approach, data
providers make an XML file that adheres to an XML Schema
created for this purpose available on a Web server, and rely
on external, third-party gateway software to make the data
from that file harvestable through the OAI-PMH. This track
was inspired by the ViDa [8] – Virtual Data Provider –
approach introduced by the OLAC Community to remedy
the problems described in the Introduction. While the ViDa
approach has properties that are specific to the OLAC
Community, and was created for version 1 of the OAI-PMH,
our research looked for a generic approach to work in
conjunction with version 2 of the OAI-PMH. Our work also
paid considerable attention to ensuring the accuracy of
responses delivered through a gateway to a harvester.
Research on this track led to a collaboration with Carl
Lagoze, Michael Nelson and Simeon Warner to specify an
Implementation Guideline for version 2 of the OAI-PMH.
At the time of writing, that Guideline is in its alpha version.
When testing of the specification is completed, it will be
officially released by the OAI under the name “The OAI
Static Repository and Static Repository Gateway” [16].
Research on this track also led to the creation of an
experimental gateway. The remainder of this paper reports
on both.

3. THE OAI STATIC REPOSITORY
MODEL
The OAI Static Repository model provides a simple approach for
exposing relatively static and small collections of metadata
records through the OAI-PMH. The Static Repository approach is
targeted at data providers that have metadata collections ranging
in size between 1 and 5000 records and that are not in a position
to host OAI-PMH-compliant repository software. However, the
model assumes that these data providers do have access to the file
services of a standard, network-accessible Web server.

The OAI Static Repository model builds on two types of
components:

• The Static Repository - An XML file that is made accessible
by a data provider at a persistent network-location. The
XML file has a well-defined structure and it contains
information similar to that in OAI-PMH responses. This
includes metadata records and supporting information
required for the purpose of harvesting via the OAI-PMH.

• The Static Repository Gateway – A network accessible
server, operated by a third party, that makes one or more
Static Repositories harvestable through the OAI-PMH. Due
to the fact that a Static Repository Gateway assigns a unique
base URL to each such Static Repository, harvesters can
harvest Static Repository information in exactly the same
manner as they harvest any other OAI-PMH Repository.

Figure 1. OAI Static Repository Model.

Both the Static Repository and the Static Repository Gateway are
described in the remainder of this Section. They are further
clarified through Figure 1 and through the example in the
Appendix. The full details are available in the OAI
Implementation Guideline on OAI Static Repositories and Static
Repository Gateways [16].
3.1 The Static Repository
A Static Repository is an XML file that validates against a W3C
XML Schema [17] that uses XML elements from the OAI-PMH
XML Namespace [18]. The data provider makes the XML file
available at a persistent HTTP address. It is anticipated that the
data provider will create and update the Static Repository by
using an XML editor, or by regularly exporting the status of a
metadata collection from a database as a Static Repository XML
file. That XML file has sections that contain the responses to the
Identify and the ListMetadataFormats OAI-PMH verbs. It also

contains one ListRecords section per Metadata Format supported
by the Static Repository.

Taking into account the nature of the environments in which
Static Repositories will be created and updated, and aiming for
ease of implementation of Static Repository Gateway software, it
was decided that Static Repositories can not use optional notions
of the OAI-PMH such as “sets”, “deleted records” and “seconds-
level datestamps”.

3.2 The Static Repository Gateway
A Static Repository Gateway (henceforth referred to as Gateway)
is a network-accessible server that makes a Static Repository
harvestable as an autonomous OAI-PMH repository. In order to
achieve this, the Gateway assigns a unique base URL to each
Static Repository that it makes harvestable. That base URL is a
specific concatenation of the network-location of the Gateway
itself, and the HTTP address of the Static Repository. Knowing
the specific concatenation rules, data providers can construct the
base URL at which a given Gateway will make their Static
Repository harvestable. Data providers make their Static
Repository known to a Gateway by issuing an OAI-PMH Identify
request against the base URL resulting from the concatenation
exercise. A Gateway keeps track of all Static Repositories that
have “registered” in this manner, and communicates the base
URLs of those Static Repositories to harvesters in a Friends [5]
container embedded in every Identify response it generates. This
allows for dynamic discovery of Static Repositories through a
Gateway.
In order to guarantee that harvesters receive adequate information
when accessing a Static Repository through a Gateway, the
behavior of a Gateway is quite strictly defined. The core rule
guiding this behavior is that a Gateway must always use the most
recent version of a Static Repository. In theory, this means that a
Gateway should fetch a Static Repository from its network-
location for every single harvesting request. However, a Gateway
can optimize its performance by caching Static Repositories.
When caching, a Gateway must perform a freshness-test on the
cached Static Repository by comparing it with the version at the
Static Repository network-location before responding to
harvesting requests. It can do so by using a HTTP HEAD with an
If-Modified-Since header that contains the date of the cached
version of a Static Repository. Given the above freshness
requirements, the following three scenarios can occur:
(1) If the Static Repository is not accessible at its Static
Repository network-location when a Gateway performs this
freshness-test, it must respond to the harvesting request with a
HTTP status-code 504 (Gateway Timeout).
(2) If the Static Repository is accessible at its Static Repository
network-location when a Gateway performs this freshness-test,
and the freshness-test indicates that the cached version is out-of-
date, then it must fetch the Static Repository from its Static
Repository network-location:

• If delaying the response until this fetch from the Static
Repository is complete and it is processed, the Gateway can
respond to the harvesting request with a HTTP status-code
503 (Service Unavailable). This specifies a Retry-After
period covering the estimated time of fetching the Static
Repository from its Static Repository network-location, and
validating it against the Static Repository XML Schema.

• If the fetched version of the Static Repository does not
validate against the Static Repository XML Schema, then the
Gateway must respond to the harvesting request with a
HTTP status-code 502 (Bad Gateway). It must not respond to
the harvesting request using the cached version of the Static
Repository.

• If the fetched version of the Static Repository does validate
against the Static Repository XML Schema, then the
Gateway must respond to the harvesting request using the
fetched version.

(3) If the Static Repository is accessible at its Static Repository
network-location when a Gateway performs this freshness-test,
and the result of the freshness-test indicates that the cached
version is the same as the version at the Static Repository
network-location, then the Gateway may respond to the
harvesting request by using the cached version of the Static
Repository.

4. A GATEWAY IMPLEMENTATION
As described in the Introduction, the aim of the Static Repository
specification is to make participation in an OAI-PMH harvesting
environment easier for data providers. This is achieved by
allowing data providers to put metadata collections out as XML
files that adhere to a well-defined format. Data providers then
rely on the services of a Gateway to make the information in such
XML files harvestable through the OAI-PMH. Especially due to
the strictly defined behavior of Gateways imposed to ensure
accuracy of harvested data, the implementation of conformant
Gateway software seems not trivial. We set out to create
experimental Gateway software, to check the feasibility of the
OAI Static Repository specification, and – by sharing our
experiences in doing so through this paper – to motivate third
parties to create robust Gateway implementations.
Our Gateway approach builds on four components:

• The OAI-PMH Interface – A CGI program that accepts OAI-
PMH requests targeted at Static Repositories; performs the
freshness-test of Cached Static Repositories for incoming
OAI-PMH requests; delivers OAI-PMH responses in case a
Cached Static Repository was determined to be fresh;
generates the appropriate HTTP status-codes when the
freshness-test failed; and communicates the necessity of
updating a Cached version to the Daemon through the Lock
Zone.

• The Cache – A file-system based storage space in which
Cached versions of individual Static Repositories are held as
separate GDBM databases [1].

• The Lock Zone - A file-system based storage space that acts
as a serving-hatch between the OAI-PMH Interface and the
Daemon. It holds Lock Files, each of which contain
information on a Static Repository that needs to be fetched
as a result of a failed freshness-test, as well as on the actual
status of the fetching process.

• The Daemon – A daemon that continuously monitors the
Lock Zone; fetches Static Repositories when the Lock Zone
indicates that doing so is required; updates the status of the
fetching process in the Lock Files; updates the Cache.

The remainder of this Section describes these components and
their interaction in more detail. That description is further
supported by Figure 2.

Figure 2. A Static Repository Gateway Implementation.

4.1 The OAI-PMH Interface
The OAI-PMH Interface consists of a front-end that ingest OAI-
PMH requests, checks those for syntactic validity and responds
with appropriate error messages in case requests are invalid. It
also passes on responses delivered to it by the back-end of the
OAI-PMH Interface, which in itself consists of three components
that are called in the listed order:

• The Lock Management Component – Writes information on
Static Repositories for which the Cached version is out-of-
date to the Lock Zone.

• The Cache Management Component - Interacts with the
Cached Static Repositories.

• The HTTP Component – Performs the freshness-test of
Cached Static Repositories.

Valid incoming OAI-PMH requests targeted at a specific Static
Repository are initially handed over to the Lock Management
Component that checks whether a process of caching the Static
Repository is currently ongoing, and if so what the status of that
process is.

• In case such a process is indeed ongoing, the front-end of the
OAI-PMH Interface responds to the harvesting request with
an HTTP status-code of 503 (Service Unavailable)
specifying a Retry-After period. The Lock Management
Component can derive such status information from the
appropriate Lock File in the Lock Zone.

• If no such process is ongoing, control is handed over to the
Cache Management Component of the OAI-PMH Interface.

Using a unique key derived from the HTTP address of the
targeted Static Repository as the entry into the Cache, the Cache

Management Component checks for the existence of a Cached
version of the Static Repository. The following two scenarios can
occur:

(1) If such a Cached version exists, then the Cache Management
Component checks the date/time of the Cached version of that
Static Repository. Next, the HTTP Component issues an If-
Modified-Since HTTP HEAD request using the obtained
date/time against the HTTP address of the Static Repository.

• If doing so reveals that the Cache is fresh, the Cache
Management Component reads the appropriate information
from the Cached GDBM database for the Static Repository,
and hands that information over to the front-end of the OAI-
PMH Interface, which can then respond to OAI-PMH
request. Depending on whether the Cache indicates that
Static Repository is a valid or invalid, the response will be a
regular OAI-PMH response containing data, or an HTTP
status-code 502 (Bad Gateway).

• If doing so reveals that the Cached version is out-of-date, the
Lock Management Component writes a Lock File in the
Lock Zone specifying the HTTP address of the Static
Repository that needs updating as well as the current status
of this fetch, which at this point is “unprocessed”. Also, the
front-end responds with an HTTP status-code 503 (Service
Unavailable), specifying a Retry-After period that is a best
guess of the amount of time it may take to update the Cached
version. At this point, from the perspective of the Gateway,
the OAI-PMH request has been processed. The harvester
will need to re-issue the request after the Retry-After period,
in order to receive an OAI-PMH response that contains
actual data.

• If doing so is unsuccessful in that there is no response to the
If-Modified-Since HTTP HEAD request, then the front-end
responds with an HTTP status-code 504 (Gateway Timeout).

(2) If such a Cached version does not yet exist, the Lock
Management Component writes a Lock File, and the front-end
responds with an HTTP status-code of 503 (Service Unavailable)
specifying a Retry-After period.

4.2 The Cache
The Cache consists of individual GDBM databases, one per
Cached Static Repository. The filename of each GDBM database
is a unique key derived from the HTTP address of the Static
Repository. Its content consists of administrative information
such as date/time of first and most recent caching of the Static
Repository, and a processed version of the Static Repository that
makes responding to OAI-PMH requests a matter of simply
joining appropriate portions of stored XML data obtained by
deconstructing the Static Repository XML file.

4.3 The Lock Zone
The Lock Zone is read/write accessible by both the Lock
Management Component of the OAI-PMH Interface and the
Daemon. When the freshness-test of a Cached version of a Static
Repository reveals that the Cached version is out-of-date or not
yet existing, the Lock Management Component writes a Lock File
in the Lock Zone stating the HTTP address of that Static
Repository, its name in the Cache, as well as the “unprocessed”

status of the process of updating the Cached version. The Lock
Zone is monitored by the Daemon, which interprets a Lock File as
an instruction to fetch a Static Repository from its HTTP address.
As will be explained in the following Section, the Daemon
updates the status of a file in the Lock Zone as it acts upon the
fetching instruction; it eventually removes the Lock File from the
Lock Zone.

4.4 The Daemon
The Daemon continuously monitors the Lock Zone and acts upon
the Lock Files deposited there by the Lock Management
Component of the OAI-PMH Interface. The Daemon itself
consists of three components that are called in the listed order:

• The Lock Management Component – Reads Lock Files with
“unprocessed” status; updates status information of Lock
Files as the process of updating/writing the Cached version
of the corresponding Static Repository is ongoing; eventually
removes Lock Files from the Lock Zone.

• The HTTP Component – Fetches Static Repositories from
their network-location.

• The Cache Management Component – Replaces the out-of-
date Cached version of a Static Repository by the newly
fetched version or creates a Cached version if no Cached
version exists; writes a flag if the newly fetched version is
not a valid Static Repository.

The Daemon interprets each individual Lock File with a status of
“unprocessed” as an instruction to cache a fresh version of the
associated Static Repository. The refreshing process starts with
the Daemon attempting to fetch the Static Repository from its
HTTP address.

• If fetching fails, the Daemon deletes the Lock File. The
Cached version will remain out-of-date, and as a result the
freshness-test will fail again when the harvester re-issues the
OAI-PMH request after the Retry-After period. The process
described in Section 4.1 will start from scratch. Eventually,
the harvester may decide to give up, or the Static Repository
may become accessible. It can be anticipated that the
Gateway would maintain the fetching history of Static
Repositories, and decide to remove some from its Cache and
Friends list based on a history that reveals an unacceptable
level of inaccessibility.

• If fetching is successful, the Daemon proceeds to validating
the fetched Static Repository. During the validation process,
the Daemon updates the status of the Lock File at several
points. If the fetched file is a valid Static Repository, its
content is used to replace the existing Cached version. The
date/time of most recent caching is updated. If no Cached
version exists yet, it is created, and the date/time of first and
most recent caching is recorded. After doing so, the Daemon
removes the Lock File from the Lock Zone. When the
harvester returns after the Retry-After period, it is most
likely that a response can be generated from the Cache, since
chances are high that the freshness-test to be performed for
the re-issued request will reveal that the Cached version is
still up-to-date. If the fetched file turns out not to be a valid
Static Repository, a flag is set in the GDBM database for that
Static Repository. Again, the date/time of most recent

caching is updated. If no Cached version exists for the
fetched invalid Static Repository, it is created. Its only
content will be the “invalid” flag, and the date/time of first
and most recent caching. Once the “invalid” flag is
recorded, the Daemon removes the Lock File from the Lock
Zone. When the harvester returns after the Retry-After
period, a HTTP status-code 502 (Bad Gateway) response can
most likely be generated based on the existing invalid flag in
the Cache, since chances are high that the freshness-test to be
performed for the re-issued request will reveal that the
invalid Cached version is still the up-to-date version of the
Static Repository.

5. DISCUSSION
Static Repositories made available through our Gateway pass the
validation tests of both the OAI Repository Explorer [11, 12] and
the OAI Registry [6].
The current implementation takes some basic precautions inspired
by the security considerations listed in the Static Repository
specification [16]. For example, an upper limit is imposed on the
total amount of Static Repositories that can be Cached and
processed at a given point in time, on the size of Cached Static
Repositories, as well as on the size of responses sent to harvesters.
In order to guarantee accuracy of responses to harvesting requests
our implementation has paid special attention to the actual
implementation of the freshness-test. Web servers on which
Static Repositories are made available may operate in other time
zones than the Gateway, and are not necessarily synchronized to
an Internet time-server. Therefore, using the Gateway’s time
when issuing an If-Modified-Since HTTP HEAD request may
lead to significant inaccuracy of the freshness-test. In order to
resolve this problem, our implementation stores the content of the
Web server’s Last-Modified header field in the GDBM database
of the Static Repository, and uses that information in a subsequent
freshness-test. As such, the freshness-test is always performed
according to the Web server’s time.
Our Gateway implementation was written in C and tested on a
500 Mhz Redhat Linux 7.3. Processing and Caching fetched
Static Repositories takes between 1 second for a small XML file
and 5 seconds for files that reach our upper limit of 2 Mb. Little
robust information can be given on the time required to fetch
Static Repositories, as those are dependent on the size of the
XML file, and are subject to network conditions. In our testing
environment, performing freshness-tests has typically taken
between one and two seconds. The time to perform a freshness-
test is relevant in that it is good indication of the maximum
amount of time a harvester must wait for a response to an OAI-
PMH request:

• If a freshness-test reveals that the Cache is still up-to-date,
generating a response from Cache requires a little extra time
due to the deconstructed manner in which Static Repositories
are Cached.

• If a freshness-test reveals that the Cache is out-of-date the
HTTP status-code of 503 (Service Unavailable) can be sent
immediately.

The only occasion at which responding to a harvester takes longer
is when the Web server on which the Static Repository is
available fails to respond. Our implementation generates an

HTTP status-code of 504 (Gateway Timeout) after having waited
for 30 seconds.

6. CONCLUSIONS
Our research into devising an approach to further lower the
barrier for data providers to share metadata collections in an OAI-
PMH environment led us into two directions. Both directions are
based on the data provider making its metadata collection
available on a Web server as an XML file of a specific format.
In the “dependent data provider approach” detailed in this paper,
data providers rely on the services of a gateway operated by a
third party to make metadata collections harvestable. The barrier
for sharing data via the OAI-PMH is lowered significantly in that
the task of data providers consists of creating and updating an
XML file containing their metadata records, placing the file on a
Web server and “registering” it with a Static Repository Gateway.
This approach depends on the actual deployment of such
Gateways. In order to guarantee accuracy of the data harvested
through a Gateway the specification of its behavior is quite strict,
and therefore adequate care must be taken when creating an actual
Gateway implementation. Nevertheless, our experiment revealed
that no significant hurdles are involved in an actual
implementation that could keep parties from stepping forward to
create and deploy robust Gateway software.
At the time of writing, both the OAI Implementation Guideline on
Static Repositories and our Gateway implementation are in alpha
phase, with feedback on both being gathered from selected
parties. Based on the attention our work has attracted so far, it is
anticipated that parties that are likely to start exposing metadata
via a Static Repository approach will emerge in a variety of
communities. The OLAC Community has indicated interest in
migrating to the generic Static Repository approach; union
catalog projects in Belgium, Brazil, and the United States are
considering adoption; and institutions collaborating with the
Digital Library Federation and the National Science Digital
Library project are exploring the use of this low-barrier approach
as a means to significantly increase the amount of metadata
records they make harvestable at limited expense.
 In the “autonomous data provider approach” on which this paper
only briefly touches, data providers use an XSL style sheet –
which could be provided by the OAI – to respond to OAI-PMH
requests. Their task consists of creating and updating an XML
file containing their metadata records, and placing both the XML
file and the XSL style sheet on their Web server. Not only does
this approach significantly lower the barrier for sharing metadata
collections through the OAI-PMH, it also turns the target group of
low-barrier data providers into autonomous operators of OAI
repositories. While truly promising, we decided that this
approach was not ready for deployment to our target group due to
the status of technologies required in the solution. Deployment
may however become feasible and attractive in the near future.

7. ACKNOWLEDGMENTS
The authors wish to thank Carl Lagoze, Michael Nelson, and
Simeon Warner for invaluable input in the process of specifying
the OAI Static Repository Implementation Guideline. The
authors are grateful for the most inspiring ViDa work of Steven
Bird and Gary Simons on behalf of the OLAC Community.
Thanks to Beth Goldsmith, Rick Luce, and Thorsten Schwander
for feedback.

8. REFERENCES
[1] Free Software Foundation. GDBM.

http://www.gnu.org/software/gdbm/gdbm.html

[2] Ginsparg, P., Luce, R., and Van de Sompel, H. The Open
Archives Initiative aimed at the further promotion of author
self-archived solutions, 1999.
http://www.openarchives.org/meetings/SantaFe1999/ups-
invitation-ori.htm

[3] Lagoze, C. and Van de Sompel, H. The Open Archives
Initiative: Building a low-barrier interoperability
framework… in Proceedings on ACM/IEEE Joint
Conference on Digital Libraries (Roanoke VA, June 2001),
ACM Press, 54-62.
http://doi.acm.org/10.1145/379437.379449

[4] Lagoze, C., Van de Sompel, H., Nelson, M., and Warner, S.
The Open Archives Initiative Protocol for Metadata
Harvesting - Version 2.0, 2002
http://www.openarchives.org/OAI_protocol/openarchivespro
tocol.html

[5] Lagoze, C., Van de Sompel, H., Nelson, M., and Warner, S.
Implementation Guildelines for the Open Archvies Initiative
for Metadata Harvesting: XML Schema for repositories to
list confederate repositories, 2002
http://www.openarchives.org/OAI/2.0/guidelines-friends.htm

[6] The Open Archives Initiative. Registering as a Data
Provider.
http://www.openarchives.org/data/registerasprovider.html

[7] The Open Archives Initiative. The Santa Fe Convention,
2001. http://www.openarchives.org/sfc/sfc_entry.htm

[8] The Open Language Archives Community. How to become
an OLAC data provider. http://www.language-
archives.org/docs/implement.html

[9] Reich, V. and Rosenthal D. LOCKSS: A Permanent Web
Publishing and Access System. D-Lib Magazine, 7 (6), 2001.
http://www.dlib.org/dlib/june01/reich/06reich.html

[10] Simons, G. and Bird, S. Building an Open Language
Archives Community on the OAI Foundation, 2003. Library
Hi Tech, 21(2). To appear.

[11] Suleman H. Enforcing interoperability with the open
archives initiative repository explorer… in Proceedings on
ACM/IEEE Joint Conference on Digital Libraries (Roanoke
VA, June 2001), ACM Press, 63-64.
http://doi.acm.org/10.1145/379437.379450

[12] Suleman H. The OAI-PMH Repository Explorer.
http://www.purl.org/NET/oai_explorer

[13] Van de Sompel, H. and Lagoze, C. The Santa Fe Convention
of the Open Archives Initiative. D-Lib Magazine, 6 (2),
2000. http://www.dlib.org/dlib/february00/vandesompel-
oai/02vandesompel-oai.html

[14] Van de Sompel, H. and Lagoze, C. The Open Archives
Initiative Protocol for Metadata Harvesting - Version 1.0,
2001.
http://www.openarchives.org/OAI/1.0/openarchivesprotocol.
htm

[15] Van de Sompel, H. and Lagoze, C. Notes from the
Interoperability Front: A Progress Report from the Open
Archives Initiative. Lecture Notes in Computer Science,
2458: Proceedings of ECDL 2002 (Rome Italy, September
2002), Springer Verlag, 144-157

[16] Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S.
Implementation Guidelines for the Open Archives Initiative
for Metadata Harvesting: The OAI Static Repository and
Static Repository Gateway, 2002
http://www.openarchives.org/OAI/2.0/guidelines-static-
repository.htm

[17] Van de Sompel, H. and Jerez, H. XML Schema defining the
OAI Static Repository format, 2002
http://www.openarchives.org/OAI/2.0/static-repository.xsd

[18] Van de Sompel, H. XML Schema for validating responses to
OAI-PMH requests, 2002
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd

9. Appendix
Table 1 shows an OAI Static Repository, which supports two
Metadata Formats (oai_dc and oai_rfc1807). It contains metadata
about a single resource. That metadata is provided in both
Metadata Formats. Note the metadataPrefix attribute that extends
the ListRecords element from the OAI-PMH XML Namespace
[18]. To improve readability, XML Namespace declarations are
not shown in the sample Static Repository.

<?xml version="1.0" encoding="UTF-8"?>
<Repository>
 <Identify>
 <oai:repositoryName>Demo</oai:repositoryName>
 <oai:baseURL>http://an.oai.org/ma/mini.xml</oai:baseURL>
 <oai:protocolVersion>2.0</oai:protocolVersion>
 <oai:adminEmail>jondoe@oai.org</oai:adminEmail>
 <oai:earliestDatestamp>2002-09-19</oai:earliestDatestamp>
 <oai:deletedRecord>no</oai:deletedRecord>
 <oai:granularity>YYYY-MM-DD</oai:granularity>
 </Identify>
 <ListMetadataFormats>
 <oai:metadataFormat>
 <oai:metadataPrefix>oai_dc</oai:metadataPrefix>
 <oai:schema>
 http://www.openarchives.org/OAI/2.0/oai_dc.xsd
 </oai:schema>

 <oai:metadataNamespace>
 http://www.openarchives.org/OAI/2.0/oai_dc/
 </oai:metadataNamespace>
 </oai:metadataFormat>
<oai:metadataFormat>
 <oai:metadataPrefix>oai_rfc1807</oai:metadataPrefix>
 <oai:schema>
 http://www.openarchives.org/OAI/1.1/rfc1807.xsd
 </oai:schema>
 <oai:metadataNamespace>

 http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt
 </oai:metadataNamespace>
 </oai:metadataFormat>
 </ListMetadataFormats>
 <ListRecords metadataPrefix="oai_dc">
 <oai:record>
 <oai:header>
 <oai:identifier>oai:an.oai.org:0112017</oai:identifier>

 <oai:datestamp>2003-01-17</oai:datestamp>
 </oai:header>
 <oai:metadata>
 <oai_dc:dc>

 <dc:title>Structural Metadata</dc:title>
 <dc:creator>Smith, Hector</dc:creator>
 <dc:subject>Digital Libraries</dc:subject>
 <dc:date>2001-12-14</dc:date>
 </oai_dc:dc>
 </oai:metadata>

 </oai:record>
 </ListRecords>
 <ListRecords metadataPrefix="oai_rfc1807">
 <oai:record>
 <oai:header>
 <oai:identifier>oai:an.oai.org:0112017</oai:identifier>

 <oai:datestamp>2002-01-15</oai:datestamp>
 </oai:header>
 <oai:metadata>
 <oai_rfc1897:rfc1807>

 <rfc1807:bib-version>v2</rfc1807:bib-version>
 <rfc1807:id>0112017</rfc1807:id>
 <rfc1807:entry>January 15, 2002</rfc1807:entry>
 <rfc1807:title>Structural Metadata</ rfc1807:title>
 <rfc1807:author>Hector Smith</rfc1807:author>
 <rfc1807:date>December 14, 2001</rfc1807:date>

 </oai_rfc1897:rfc1807>
 </oai:metadata>
 </oai:record>
 </ListRecords>
</Repository>

Table 1: An OAI Static Repository

