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A novel rank-revealing multiplication scheme that accelerates the iterative integral equation-based analysis of
wave propagation in photonic crystal devices is presented. The proposed multiplication scheme exploits the
bandgap character of the background photonic crystal to achieve both rapid convergence of the iterative solver
as well as a low matrix-vector multiplication cost. The versatility and computational efficiency of the shielded-
block preconditioner are demonstrated by its application to the analysis of wave propagation out of an photonic
crystal horn antenna array.
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1 Introduction

Recently, two-dimensional photonic crystals (PhCs) become more and more studied because of their promising
application to various optoelectronic devices [1]. The PhCs studied in this paper comprise parallel, homogeneous,
dielectric/magnetic cylinders that snap to a periodic lattice and that reside in a homogeneous background medium.
The underlying periodic structure gives rise to the appearance of frequency ranges - the so-called photonic or
electromagnetic bandgaps - for which no electromagnetic fields can propagate through the crystal. In turn, this
property can be used to create PhC waveguides, for example, by removing/adding cylinders from/to the otherwise
defect-less PhC. Various applications of this phenomenon have been demonstrated, such as waveguides with sharp
bends [2], multiplexers [3], superprisms [4], etc.

As these structures are often electromagnetically large, usage of computationally efficient methods is impera-
tive to their analysis. The multiple scattering technique (MST) [5] is a popular method for analyzing PhC devices.
This frequency domain technique solves integral equations in terms of equivalent currents residing on the PhC
cylinders’ surfaces. Often, the MST exploits the cylinders’ circular nature by expanding surface currents in an-
gular Fourier series, which permits their fields to be cast in terms of Bessel/Hankel functions. With this method,
high accuracy can be obtained with only a few unknowns per cylinder. The MST’s principal disadvantage is that
it requires the solution of a dense linear system of equations

B = B, (1)

whose dimension scales linearly with the number of cylinders. Moreover, numerical experiments show that
when solving this system for realistic PhCs iteratively, a high number of iterations is required. This observation
necessitates the use of preconditioners.

In this paper, a fast iterative solution method for the analysis of finite PhC devices that explicitly exploits
both the bandgap character of the PhC and a (shielded-block) preconditioner, will be described. The use of the
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shielded-block preconditioner automatically leads (z) to fast convergence of the iterative solver and (zi) to fast
matrix-vector multiplications following a rank revealing scheme. In this sense, the proposed scheme contrasts
itself to classical fast schemes in which the acceleration and the preconditioning are treated separately.

2 Shielded-block Preconditioner

This section details the proposed rank-revealing shielded-block preconditioner. Instead of solving (1) directly, an
equivalent system of equations

MZI=ME, (2

where the preconditioner M approximates Z ~1 is constructed and solved iteratively. In what follows Z denotes
the preconditioned interaction matrix M Z.

2.1 Construction of the shielded-block preconditioner

The proposed shielded-block preconditioner can be seen as an improvement on a classical block-diagonal pre-
conditioner. To construct the Jatter, the PhC device first is subdivided into /N, contiguous blocks of cylinders.
Next, for each block j, the submatrix Z; of Z describing all of its cylinders’ self- and mutual-interactions is
inverted. Finally, all resulting inverses are collected into a block-diagonal matrix to form an approximate inverse
M of Z. The construction of the shielded-block preconditioner proceeds only slightly differently. First, for each
block the submatrix Z ; describing self- and mutual-interactions of its cylinders plus those residing in a shield
around it, viz. a physical jacket of preset thickness that surrounds the block and comprises cylinders present in

1 : £ i =1 ; %
the block’s immediate environment, is inverted. Next, from Z, , only the rectangular submatrix ¥ ; comprising
rows pointing to variables inside block j are retained. Finally, all Y ; are arranged into a new approximate inverse

M of Z ; this new M is no longer block-diagonal as its block constituents overlap along the column index.

2.2 Effect on preconditioning and iteration counts

This section compares the performance of the shielded-block preconditioner to that of diagonal and block-
diagonal preconditioners via their application to a simple PhC device, namely a PhC waveguide formed by
removing one row of cylinders from a defect-less PhC. The defect-less PhC is composed of dielectric cylin-
ders with constitutive parameters (€2, p2) = (11.56¢€g, o) and radius r = 0.18a, that are spaced by a from center
to center along the x and y directions -a is called the lattice constant- and that are residing in free space, viz.
(€1, p1) = (eg, po)- The structure comprise 40 rows of 25 cylinders, i.e., a total of N, = 1000 cylinders, which
translates into 3000 unknowns. For illustrative purposes, the block-diagonal and shielded-block preconditioners
are constructed by subdividing the PhC devices into blocks of 5 by 5 cylinders. Figure 1 shows the evolution of
the residual error versus the iteration count for this PhC device when solving (2) with the quasi-minimal residual
(QMR) routine [6] and this for the three different types of preconditioners. When using only a diagonal precon-
ditioner, the residual error quasi-stagnates during many iterations. The block-diagonal and the shielded-block
preconditioner entirely alleviate this phenomenon. Moreover, for both PhC configurations studied, application of
the shielded-block preconditioner leads to a smaller iteration count than the block-diagonal preconditioner.

2.3 Effect on interaction ranks and matrix-vector multiplication speed

This section details the effect of the shielded-block preconditioner on the numerical ranks of submatrices of the
preconditioned interaction matrix. Specifically, it shows that left-multiplication of the unpreconditioned interac-
tion matrix Z with the shielded-block preconditioner automatically leads to a fast matrix-vector multiplication
scheme. First note that, by it very definition, Z =1+ 2"+ Z where 1 stands for the identity matrix, Z™ com-
prises all near field interactions between adjacent blocks, and Zf comprises all far field interactions between two
non-touching blocks. Let Zﬁ denote the submatrix of Z describing interactions between non-touching blocks

1 and j. Because w lies within the PhC bandgap, the rank of Zg typically is very low. The rank deficiency of

submatrices of Z can be traced to the bandgap character of the PhC: for frequencies inside the electromagnetic
bandgap no fields can propagate through a defect-less PhC. As a result, upon preconditioning, blocks no longer
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Fig. 1 Residual error vs iteration number for an EC waveguide.

interact through PhC-immersed boundaries, but only through intended interaction ports or PhC interfaces to the
homogeneous background medium. This rank deficiency implies that the matrix-vector product ZA can be
evaluated fast by approximating 2{5 by its truncated singular value decomposition, viz. by discarding all singular
vectors with singular values below a set tolerance/noise floor;

-~ - = ~H
Here, A; denotes a vector comprising all unknowns of block 7, 5‘,-3- is a (R x R) diagonal matrix containing the
R largest singular values of Z%, the matrices U;; and V';; contain Z7%’s left and right singular vectors, and (-)
denotes the Hermitian conjugate. (In practice, rank revealing submatrix decompositions other than the SVD are
used as they serve the same purpose while being cheaper to compute.)
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Fig.2 EC horn antenna array.

3 Example: PhC horn antenna array

Consider the PhC horn antenna array depicted in Figure 2, comprising four basic PhC horn antennas connected to
afeed network of PhC waveguides. The basic PhC horn antenna was presented in [7] and was analyzed there using
the finite difference time domain method. Its taper length and taper angle are 21a and arctan(z-), respectively.
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Fig.3 Rank map of the shiclded-block preconditioned interaction matrix for the EC horn array device. Every
small rectangle corresponds with a submatrix Z% and its color indicates the number of singular values larger
than 1075,

The complete PhC horn antenna array comprises 3600 cylinders, which corresponds to 10800 unknowns. For
this example, the blocks to form M are squares of 8 by 8 lattice constants. The shield thickness also is 8 lattice
constants. In this case, Z™ reduces to a zero matrix. Figure 3 shows the “rank map” of the (shielded-block)
preconditioned interaction matrix for this PhC horn antenna array when the noise floor below which all singular
values are discarded is set to 10~6. With this shielded-block preconditioner, the iterative solution of the system
of equations (1) with transposed-free QMR to a tolerance of 107° requires only 17 iterations and using the
proposed scheme this takes 3.49 s on a dual AMD Opteron 244, 1.8GHz PC. Using the multilevel fast multipole
algorithm in combination with the same preconditioner, the iterative solution takes 29.2 s. Applying a block-
diagonal preconditioner (with the same blocks), the iterative solution of the system of equations (1) requires 354
iterations, which takes more than 9 minutes using the multilevel fast multipole algorithm [8]. It is seen that the
single-level preconditioner outperforms the multilevel fast multipole algorithm.
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