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Introduction

An electromagnetic crystal (EC) Green function multiple scattering technique (MST) that
permits the fast simulation of wave propagation in 2D EC devices was presented in [1]. The
targeted devices were obtained by removing cylinders from doubly periodic, defect-less, and
infinite ECs. Contrary to the conventional free-space Green function MST, which associates
unknown currents with the surfaces of all physical cylinders that define the EC device and
then subsequently describes their interactions using a free-space Green function, the EC
Green function MST considers unknown currents on the surfaces of fictitious, removed
cylinders and then models their interaction via a Green function innate to the surrounding
infinite EC. For frequencies in the electromagnetic bandgap, this EC Green function decays
exponentially with distance. Therefore, its pre-computation can be achieved using the free-
space Green function MST by considering a centrally excited, finite, and small EC. For
the same reason, the EC Green function MST’s system of equations comprises a sparse
interaction matrix and a localized excitation that can be solved rapidly by multi-frontal
methods. This paper details a generalized formulation of the scheme of [1] that handles
EC devices defined on square or triangular lattices supporting both TMz and TEz polarized
fields, which are obtained by replacing cylinders from a defect-less EC by cylinders that do
not conform to those of the EC background. Throughout the paper it is assumed that the
angular frequency ω lies within the EC bandgap.

Formulation

Consider a 2D EC device (Fig. 1(a)) obtained by replacing Nr cylinders from an infinite
and defect-less EC by cylinders that do not conform to those of the EC background; these
cylinders henceforth will be termed irregular. To simplify notation, it is assumed that
all irregular cylinders are identical. The background EC comprises identical, infinite and
z-invariant, homogeneous, dielectric/magnetic circular cylinders with radius r and consti-
tutive parameters (ε2, µ2) that snap to a regular square or triangular lattice (with lattice
constant a) and reside in a homogeneous background medium with constitutive parameters
(ε1, µ1). The irregular cylinders’ radius is r̃ and their constitutive parameters are (ε3, µ3).
Define rmax = max(r, r̃). Let ρ = (ρ, φ) denote a global position vector in the xy-plane.
Unit vectors in this global cylindrical coordinate system are denoted by uρ and uφ. Fur-
ther, let ρj = (ρj , φj) denote a local position vector w.r.t. the center ρc

j of cylinder j,
j = 1, . . . , Nr. Unit vectors in this local cylindrical coordinate system are denoted by uρj

and uφj . Finally, let (ε(ρ), µ(ρ)) denote the distribution of the constitutive parameters in
the xy-plane, viz. (ε(ρ), µ(ρ)) = (ε1, µ1) outside all physical cylinders, (ε(ρ), µ(ρ)) = (ε2,
µ2) inside a regular cylinder, and (ε(ρ), µ(ρ)) = (ε3, µ3) inside an irregular cylinder.
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Figure 1: Field-equivalence theorem applied to the simulation of an EC device using the
EC Green function approach.

Let Ei(ρ) and H i(ρ) denote incident electric and magnetic fields generated by impressed
sources that radiate in the presence of the defect-less EC, viz. the infinite EC without any
cylinders replaced. Upon replacing the cylinders, total fields E t(ρ) and H t(ρ) are ob-
served. The difference between the total and incident fields defines the scattered fields
Es(ρ) and H s(ρ). To describe scattered and total fields, two sets (α = 1, 2) of equivalent
electric and magnetic currents (J j

α(ρ), Kj
α(ρ)) are introduced on the circular surface Sj

with radius rmax round about about every replaced cylinder j, j = 1, . . . , Nr (Figs. 1(b)
and 1(c)). These currents are related to the total field on Sj by

J j
α(ρ) = sαuρj × Ht(ρ)|ρ∈Sjδ(ρj − rmax), (1)

Kj
α(ρ) = −sαuρj × Et(ρ)|ρ∈Sjδ(ρj − rmax), (2)

with s1 = 1 and s2 = −1. The analysis of wave propagation in 2D EC devices falls apart
into two non-interacting transverse to z (TMz and TEz) polarizations. However, because of
duality, the same formulation can be applied for both polarizations if the Maxwell equations
are re-expressed in function of “new” field components (F τ (ρ), Gτ (ρ)), τ = i, t, s, currents
(Pj

α(ρ), Qj
α(ρ)), and constitutive parameters (κ(ρ), θ(ρ)). For the TMz polarization, these

generalized field components, currents, and constitutive parameters are defined as

F τ
z (ρ) = Eτ

z (ρ), Gτ
ρ(ρ) = Hτ

ρ (ρ), Gτ
φ(ρ) = Hτ

φ , τ = i, t, s (3)

Pj
α,z(ρ) = J j

α,z(ρ), Qj
α,φj

(ρ) = Kj
α,φj

(ρ), (4)

κ(ρ) = ε(ρ), θ(ρ) = µ(ρ), (5)

while for the TEz polarization, they are defined as

F τ
z (ρ) = −Hτ

z (ρ), Gτ
ρ(ρ) = Eτ

ρ (ρ), Gτ
φ(ρ) = Eτ

φ(ρ), τ = i, t, s (6)

Pj
α,z(ρ) = −Kj

α,z(ρ), Qj
α,φj

(ρ) = J j
α,φj

(ρ), (7)

κ(ρ) = µ(ρ), θ(ρ) = ε(ρ). (8)

All other field components are zero. Moreover, the formulation is essentially the same for
square and triangular lattices if the latter is described in function of the so-called lattice unit
vectors u1 and u2 (Fig. 1(a)).
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If F s,j
α,z(ρ) denotes the amplitude of the z-directed field radiated jointly by P j

α,z(ρ) and
Qj

α,φj
(ρ) in the unbounded and defect-less EC when α = 1 or radiated by P j

α,z(ρ) and

Qj
α,φj

(ρ) around an irregular cylinder placed in the unbounded medium with constitutive
parameters (κ1, θ1) when α = 2, then it follows from the field-equivalence theorem that

F i
z(ρ) +

Nr∑
j=1

F s,j
1,z(ρ) = 0 if ρ ∈ S−

i , i = 1, . . . , Nr, (9)

F s,j
2,z(ρ) = 0 if ρ ∈ S+

j , j = 1, . . . , Nr. (10)

Here, S−
j and S+

j denote surfaces residing just inside and outside the surface Sj , respec-

tively. To solve equations (9–10), P j
α,z(ρ) and Qj

α,φj
(ρ) are expanded as

Pj
α,z(ρ) = sα

K∑
n=−K

P j
n

2πrmax
ejnφjδ(ρj − rmax), (11)

Qj
α,φj

(ρ) = sα

K∑
n=−K

Qj
n

2πrmax
ejnφjδ(ρj − rmax). (12)

Solving the (interior) eqn. (10) yields

P j
n

Qj
n

= −j

√
κ1

θ1

N n
13(r̃)J

′
n(k1rmax) − T n

13(r̃)H
(2)
n

′
(k1rmax)

N n
13(r̃)Jn(k1rmax) − T n

13(r̃)H
(2)
n (k1rmax)

. (13)

Here,

N n
13(r̃) = κ3θ1H

(2)
n (k1r̃)J ′

n(k3r̃) − κ1θ3H
(2)
n

′
(k1r̃)Jn(k3r̃), (14)

T n
13(r̃) = κ3θ1Jn(k1r̃)J ′

n(k3r̃) − κ1θ3J
′
n(k1r̃)Jn(k3r̃). (15)

Relationship (13) permits F s,j
1,z(ρ), the amplitude of the z-directed field radiated jointly by

Pj
1,z(ρ) and Qj

1,φj
(ρ) in the defect-less and unbounded EC, to be expressed as

F s,j
1,z(ρ) =

K∑
n=−K

Gec
n (ρj)P

j
n. (16)

Quantity Gec
n (ρ) is the EC Green function for a Huygens source with distributed compo-

nents 1
2πrmax

δ(ρ − rmax)ejnφuz and j
2πrmax

√
θ1
κ1

[
Nn

13(r̃)Jn(k1rmax)−T n
13(r̃)H

(2)
n (k1rmax)

Nn
13(r̃)J ′

n(k1rmax)−T n
13(r̃)H

(2)
n

′
(k1rmax)

]
δ(ρ −

rmax)ejnφuφ radiating jointly in the defect-less and unbounded EC. To solve for the un-
knowns P j

n, expansion (16) is inserted into (9) and the resulting equation is tested by
T i

m(ρ) = 1
2πJm(k2rmax)e

−jmφiδ(ρi − rmax), resulting in the matrix equation

ZP = F , (17)

where Zij
mn = 〈T i

m(ρ), Gec
n (ρj)〉 and F i

m = 〈T i
m(ρ),−F i

z(ρ)〉. The interaction matrix Z
is essentially sparse. Because ω is assumed to lie within the EC bandgap, Gec

n (ρ) decays
exponentially with |ρ|. Therefore, each and every removed cylinder only interacts with
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its near neighbors, thereby rendering vanishingly small all entries of Z describing interac-
tions between sufficiently separated replaced cylinders. Recently, significant advances in
direct methods for inverting such sparse matrices have been reported, e.g., the multi-frontal
method by Duff and Reid [2]. Unfortunately, no closed-form expressions for Gec

n (ρ) exist.
As already mentioned above, Gec

n (ρ) decays exponentially with |ρ|. As a result, Gec
n (ρ) can

be evaluated using the conventional free-space MST by considering a finite EC wherein the
central cylinder, which is assumed centered about the spatial origin ρ = 0, is excited by the
above defined Huygens source. As this excitation depends on the radius and constitutive
parameters of the irregular cylinder, this means that for EC devices comprising different
types of irregular cylinders many different EC Green functions have to be calculated. For-
tunately, all these EC Green functions can be computed quickly starting from the EC Green
function for a removed cylinder (as defined in [1]) using FFTs, making it unnecessary to
solve a new linear system for every type of EC Green function.
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Figure 2: Transmission spectrum of an EC waveguide splitter calculated with the EC Green
function MST.

Example

To demonstrate the usefulness of the proposed scheme, consider the EC waveguide splitter
depicted in Fig. 2(a). The background EC is composed of air holes, i.e., (ε2, µ2) = (ε0,
µ0), with radius r = 0.35a that are arranged on a triangular lattice with lattice constant
a and reside in a background medium with (ε1, µ1) = (11.56ε0, µ0). The EC waveguides,
with length l = 20a, comprise smaller air holes with radius r̃ = 0.07a. Figure 2(b) shows
the transmission spectrum for TEz polarized fields of the EC waveguide splitter calculated
with the EC Green function MST. With K = 2, the EC Green function MST calls for 500
unknowns. For one frequency point, it takes roughly 30 s to calculate the EC Green function
and 1 s to fill and solve the sparse system of equations (17).
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