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Hysteresis in ferromagnetic Materials

Ben Van de Wiele, Luc Dupré, Member, IEEE, and Femke Olyslager, Fellow, IEEE

Abstract— The paper deals with a two-level model for the
evaluation of the electromagnetic hysteresis behavior of ferro-
magnetic materials when applying a magnetic field. The model
can be used to determine which mechanisms minimize material
losses in electrical steels. The material is seen in a high-level
part as an ensemble of interacting monocrystals, where each
monocrystal is described in a low-level 3D micromagnetic model.
In this paper the 3D micromagnetic model is presented in order
to find which mechanisms influence the magnetization loops
of monocrystals. The micromagnetic model is based on several
interactions between the magnetization vectors M of elementary
dipoles in the crystal and the applied field. These interactions
contribute to the effective field, composed of the applied field, the
exchange field, the anisotropy field, the magnetostatic field and
the magneto-elastic field. The time variation of the magnetization
vector M in each space point obeys the Landau-Lifshitz equation.
Macroscopic magnetization loops are reconstructed considering
the average magnetization in the direction of the applied field.
The influence of crystal defects on the magnetization is included
by means of the stress they induce in the lattice.

Index Terms— crystal defects, hysteresis, Landau-Lifshitz,
magnetization loop, micromagnetism, monocrystal

I. INTRODUCTION

TO improve the performance of electromagnetic devices,
like electrical machines and transformers, the overall

losses in general and the iron losses in particular must be
minimized. Classically, electrical steel is characterized and
qualified by means of standards which are based on simple,
unidirectional sinusoidal flux excitations using e.g. Epstein,
ring core or single sheet measurement equipment. Generally,
the measured iron losses in electromagnetic devices exceed the
value based on these standard measurements (unidirectional
sinusoidal excitation). This is caused by distorted flux distribu-
tions, local rotational excitations, short-circuit between neigh-
boring laminations, changes in the magnetic characteristics due
to the mechanical treatment, etc. Therefore, a profound study
of the material behavior of electrical steel under application
conditions is very important. This study is important for the
producers of electrical steel as for the machine constructors,
both aiming to maximize machine performances. Understand-
ing the phenomena inside the machine core is an indispensable
step in the process of developing electromagnetic devices with
a higher efficiency, thus lower core losses, resulting in a lower
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energy consumption. Hence producers of electrical steels are
not only interested in the material behavior under prescribed,
strongly simplified conditions, but also under the realistic
conditions in electromagnetic devices. Here, the relation be-
tween the electromagnetic behavior and the microstructure of
the electrical steel is crucial as the microstructure is directly
related to the material production and treatment techniques.
Also machine constructors are interested in material behavior
under application conditions with regard to the material choice
when optimizing the design of the device. A good description
of the magnetic behavior of ferromagnetic materials may start
from microstructural features like the presence of lattice ef-
fects, grains, textures, stresses, crystal defects, etc. A physical
material model becomes valuable when these microstructural
features are translated into quantitative predictions about the
magnetization dynamics. The establishment of the correlation
between the macroscopic magnetic properties, such as the
electromagnetic losses, and the microstructural features plays a
crucial role in the adaption of material production technologies
to improve the material quality

II. MACROSCOPIC MAGNETIC MATERIAL MODEL

A ferromagnetic material can be magnetized when it is
exposed to an external time varying magnetic field. However,
there is no unique relation between the applied magnetic
field and the magnetization of the crystal: no single valued
magnetization curve is described, but instead a magnetization
loop or hysteresis loop.

The macroscopic hysteresis loop characterizes the material
losses when cyclic magnetic fields are applied. A two-level
model helps us to understand which microstructural features
can decrease the electromagnetic losses. In this model the
macroscopic material is seen as an ensemble of N monocrys-
tals, each described by a 3D-micromagnetic model (the lowest
level). A macroscopic model (the highest level) describes the
ensemble of monocrystals. Each monocrystal interacts with the
magnetic field applied on the macroscopic material (Happlied)
on the one hand and the mean magnetizations < Mi > of
all other monocrystals i = 1..N on the other hand, together
resulting in a space varying effective applied field Ha,eff (r).
The link between the two models is the relation between the
effective applied field felt by the monocrystal i, Ha,eff (ri)
and the mean magnetization of the monocrystal < Mi >.

Ha,eff (ri) ↔< Mi > (1)

In this paper the 3D-micromagnetic model describing the
monocrystal is presented in order to find which mechanisms
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influence the relation (1). The monocrystal is seen as an entity
subjected to an effective applied field Ha,eff (ri), for the sake
of clarity simply called the applied field Ha.

The presented 3D-micromagnetic model is based on the
Landau-Lifshitz-formalism [1], that describes the electromag-
netic action at the level of magnetic dipoles, resulting in
the damped precession movement of the local magnetization
vector with constant amplitude. By means of the local (micro-
scopic) effective field, the formalism allows us to account for
both the magnetic short distance effects (e.g. exchange field,
anisotropy field and magnetoelastic field) and the magnetic
long distance effects (magnetostatic field, imposed magnetic
field). The magnetoelastic field takes lattice defects into ac-
count via the stress they induce in the lattice.

Starting from a predefined microstructural state, the mi-
cromagnetic model must permit us to describe the mean
magnetization < M > of the monocrystal in the form of
magnetization loops, caused by a time varying magnetic field.

III. MICROMAGNETIC THEORY

The theory of ferromagnetic materials is based on the
assumption, following Landau and Lifshitz [1], that the mag-
netization of magnetic dipoles M varies with the position, but
that it has a fixed temperature dependent magnitude |M| =
Ms (below Curie-temperature). In the theory, the Gibbs free
energy (φG) represents the total energy density in the crystal.
This energy density φG depends on the configuration of the
magnetic dipoles M = Msm and is minimized in order to find
equilibrium conditions for the magnetic dipoles [2], leading to
the definition of the effective magnetic field (Heff ) in each
point of the crystal. The static micromagnetic equilibrium is
expressed as

m(r)×Heff (r) = 0 (2)

The effective field contains all influences of the total crystal
on the magnetic dipole M at that place.

A. The effective field Heff

The effective field is composed of the applied field (Ha),
the exchange field (Hexch), the anisotropy field (Hani), the
magnetostatic field (Hms) and the magnetoelastic field (Hme).

Heff = Ha + Hexch + Hani + Hms + Hme (3)

Here the exchange and anisotropy fields are (using the
Einstein summation convention: when two equal indices are
used, summation is made)

Hexch =
2A

µ0Ms
∇2γiei (4)

Hani = − 1
µ0Ms

∂φani

∂γi
ei (5)

with A the exchange stiffness and the anisotropy energy

φani = K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2α

2
1α

2
2α

2
3 (6)

where αi is the direction cosine of the m-vector with respect
to the ith crystallographic axis of the based centered cubic iron
lattice, while γi refer to the direction cosines of m with respect

to the (x,y,z)-coordinate system. K1 and K2 are anisotropy
constants.

The magnetostatic field follows from ∇ ·Hms = −∇ ·M
and ∇×Hms = 0 using Greens functions:

Hms =
Ms

4π

∫

V

(
m

|r− r′|3 −
(m · (r− r′)) (r− r′)

|r− r′|5
)

dV ′

(7)
Here is V the volume of the considered crystal.

The magnetoelastic field is given by

Hme = − 1
µ0Ms

σij
∂

∂γk

(
εQ
kj(α)

)
ei (8)

where σ is the local stress tensor and εQ is the free magne-
tostrain tensor with elements

εQ
ij =

3
2
λ100

(
αiαj − 1

3

)
δij +

3
2
λ111αiαj(1− δij) (9)

with λ100 andλ111 magnetostriction constants while δij is the
kronecker symbol.

B. Crystal defects

As mentioned, the presence of crystal defects is taken
into account by there characteristic stress distribution. In the
model, edge dislocations, screw dislocations and point defects
contribute to the total stress tensor σ.

The non-zero components of the stress tensor σedge char-
acteristic for an edge dislocation running through the origin,
with dislocation axis parallel to the z-axis and Burgers vector
b parallel with the x-axis are given by [3]

σedge
11 = −τ0

by(3x2 + y2)
(x2 + y2)2

(10)

σedge
22 = τ0

by(x2 − y2)
(x2 + y2)2

(11)

σedge
33 = 2τ0

νy

x2 + y2
(12)

σedge
12 = σedge

21 = τ0
bx(x2 − y2)
(x2 + y2)2

(13)

with

τ0 =
G

2π(1− ν)
(14)

Here is b the length of the Burgers vector of the edge
dislocation and G and ν the modulus of rigidity and Poisson’s
ratio respectively. In the monocrystal the Burgers vector is
parallel with a < 1 1 1 > direction, while the axis of the
dislocation is parallel with a < 1 1 0 > direction [4]. So
the stress tensor σedge has to be transformed in terms of a
proper rotation matrix Redge to a stress tensor σ′edge that
incorporates the monocrystal by

σ′edge
ij = Redge

ik Redge
jl σedge

kl (15)

The non-zero components of the the stress tensor σscr

characteristic for a screw dislocation running through the
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origin and with dislocation axis parallel to the z-axis are given
by [3]

σscr
13 = σscr

31 = −Gb

2π

y

x2 + y2
(16)

σscr
23 = σscr

32 = −Gb

2π

x

x2 + y2
(17)

For a screw dislocation the Burgers vector b is parallel with
the axis of the dislocation and parallel with a < 1 1 1 >-
direction. So the stress tensor σscr should also be transformed
to σ′scr to match the crystal lattice by a transformation similar
to (15).

The components of the strain tensor εpd of a point defect
are given by [5]

εpd
ij = −3

2
a3

(
(1 + β)1/3 − 1)

)

r3

rirj

r2
(18)

with ri=1,2,3 = (x, y, z) respectively, r =
√

x2 + y2 + z2

and a the lattice constant of iron. The mismatch parameter
β is defined as the relative difference in volume between the
distorted volume (V ) and undistorted volume (V0)

V = V0(1 + β) (19)

An interstitial or foreign atom bigger than a lattice atom
is described by a characteristic volume expansion, β > 1.
A vacancy or foreign atom smaller than a lattice atom is
described by a characteristic volume reduction , β < 1.
The stress components σpd

ij are calculated by the constitutive
relation

σpd
ij = Cijklε

pd
kl (20)

with C a material dependent positive-definite symmetric
fourth-order tensor. The expressions (18) and (20) are
isotropic, thus independent of lattice directions and can be
used unchanged.

C. Dynamics

The evolution of the magnetic dipoles m is expressed in
terms of the effective field by the Landau-Lifshitz-equation
(LL-equation)

∂m
∂t

=
γG

1 + α2
m×Heff − αγG

1 + α2
m× (m×Heff ) (21)

with α and γG the damping constant and the gyromagnetic
constant respectively. The static micromagnetic equilibrium
condition, usually formulated as m × Heff = 0, follows
directly from the LL-equation (21).

IV. 3D MICROMAGNETIC MODEL

In Fig 1 the micromagnetic model of the monocrystal is
shown as a cuboid subdivided in Nx × Ny × Nz cubes
with sides ∆. The crystallographic axes x′, y′, z′ are defined
with respect to the xyz-coordinate system in terms of Euler
angles (φ, θ, ψ) that define the rotation matrix R(φ, θ, ψ)
which rotates the xyz-coordinate system towards the x′y′z′-
coordinate system [7]. Each cell in the space discretization
contains one single magnetization vector m. The space deriva-
tives appearing in (4) are approximated by a classical finite

N cellsy

yx

z

N cellsx

N cellsz

y’

x’

z’

D

Fig. 1. Scheme of the micromagnetic model of a cuboid monocrystal

difference method. The magnetostatic field (7) together with
the exchange field (4) is calculated by Fast Fourier Transforms
in order to save computational time.

The initialization of the total stress is done by adding the
stress contributions of the different defect structures, each
according to there own orientation in the crystal as outlined
above. Hereby, the intrinsic stress caused by magnetostriction
is neglected so (total) strain compatibility

∇× (∇× ε)T = 0 (22)

can not be guaranteed (ε is the total strain tensor). This
approximation is called the relaxed approach and is proven
to be reasonable for thin materials with low magnetostriction
[6].

For the time discretization the quasi-static applied field Ha

is approximated with a piecewise constant time function. It
is assumed that at the moment the applied field Ha jumps
from a constant value to the next one, the material is in static
micromagnetic equilibrium. Using the LL-equation (21), the
magnetization dynamics in each basis cell is computed through
time stepping until a new static micromagnetic equilibrium is
obtained corresponding with the new constant value for the
applied field Ha. The magnetization dynamics is evaluated
analytically at [ti, ti + 1] by introducing in each basis cell a
local (u,v,w)-system with the u-axis parallel with Heff (ti).
The LL-equation (21) can be solved analytically in this frame-
work when Heff (t) is kept constant during the time step

Heff (t) = Heff (ti)eu ti ≤ t ≤ ti+1 (23)

During the time step m evolves from m(ti) = uieu + viev +
wiew at t = ti to m(ti+1) = ui+1eu + vi+1ev + wi+1ew at
t = ti + ∆t with

ui+1 =
eqα∆t(1 + ui)− e−qα∆t(1− ui)
eqα∆t(1 + ui) + e−qα∆t(1− ui)

(24)

vi+1 = 2
vi cos(q∆t)− wi sin(q∆t)

eqα∆t(1 + ui) + e−qα∆t(1− ui)
(25)

wi+1 = 2
vi sin(q∆t) + wi cos(q∆t)

eqα∆t(1 + ui) + e−qα∆t(1− ui)
(26)

with q = γGHeff (ti)/(1 + α2). In order to improve the rate
of convergence, α is chosen to be 1.
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TABLE I
MICROSCOPIC MATERIAL CONSTANTS FOR PURE IRON

quantity value unit
µ0 Ms 2.16 [T ]

A 1.5 10−11 [Jm−3]
K1 0.48 105 [Jm−3]
K2 −0.50 105 [Jm−3]
λ100 22 10−6 []
λ111 −21 10−6 []

a 0.3 10−10 [m]
C11 2.41 1011 [Pa]
C44 1.12 1011 [Pa]
C12 1.46 1011 [Pa]
G 82 109 [Pa]
ν 0.33 []

γG −2.21 105 [mA−1s−1]

V. INFLUENCE OF MICROSTRUCTURE ON THE HYSTERESIS
LOOP

To determine what mechanisms influence the shape of the
hysteresis loop several numerical experiments were performed.
Table I shows the material constants for pure iron, used in the
experiments with Cijkl in Voigt’s notation [2]. A first series
of experiments is performed on a cuboid monocrystal with
dimensions 1.28 µm × 2.56 µm × 1.28 µm divided in cubes
with sides 10 nm. Two cases are distinguished.

In the first case the crystal has no defects while in the second
case the crystal has five dislocations (edge and screw dislo-
cations). For each case three hysteresis loops are simulated.
A first one with the applied field Ha parallel with the y-axis
and lattice axes parallel with the xyz-axes i.e. parallel with
the edges of the cuboid (see Fig 1), a second one with the
applied field Ha parallel to the space diagonal of the cuboid
and the lattice axes parallel to the xyz-axes and a third one
with the applied field Ha parallel to the space diagonal and
the lattice axes parallel with the directions determined by the
Euler angles (φ = π/5, θ = π/5, ψ = π/5). The results are
shown in Fig 2. Fig 3 shows the microscopic configuration of
the magnetization vectors in three edge plains of the cuboid
for the remanent magnetization (Ha = 0) of the hysteresis
loop in solid line of Fig 2(a).

A second experiment is performed on a spherical monocrys-
tal with a radius of 0.64 µm divided in cubes with sides 10 nm,
the applied field Ha is chosen parallel with a lattice axis. The
result is shown in Fig 4. For both experiments, the applied
magnetic field Ha is approximated by a piecewise constant
function, considering 400 equidistant time intervals. The mean
magnetization is calculated in the direction of the applied field.

Comparison between the hysteresis loop with solid line
of Fig 2(a) and the hysteresis of Fig 4 proves that the
shape of the ferromagnet influences the mean magnetization
drastically. Comparison between the hysteresis loops for the
cuboid monocrystal of Fig 2 learns that the direction of the
applied field Ha with respect to the lattice axes and the edges
of the cuboid influences the shape of the hysteresis loop.
Comparison between the hysteresis loops of Fig 2(a) and
Fig 2(b) learns that dislocations also have a large influence
on the macroscopic magnetization. The configuration of the
magnetization dipoles in Fig 3 shows some magnetization
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(a) zero dislocations
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(b) five dislocations

Fig. 2. cuboid monocrystal with 0 and 5 dislocations, the solid line is the
hysteresis loop for Ha parallel to the y-axis and lattice axes parallel to the
xyz-axes, the dashed line for Ha parallel to a space diagonal and lattice axes
parallel to the xyz-axes, the dash-dot line for Ha parallel to a space diagonal
and lattice axes not parallel to the xyz-axes.

mechanics known in the literature [8]. In the y = 0 plain
90 degree domain walls come together in a vortex, the other
plains are separated in two magnetic domains by a 180 degree
domain wall.

VI. CONCLUSION

The presented micromagnetic proves that different mech-
anisms influence the macroscopic hysteresis loop of a
monocrystal. First, the shape of the monocrystal has a large
influence on the magnetization. Second, the directions of the
applied field with respect to the lattice axes and geometrical
axes are important. Third, lattice defects influence the shape
of the hysteresis loop.
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