Fifth FTW PhD Symposium

Faculty of Engineering, Ghent University
1st December 2004

Aspect Oriented Design and Legacy Software
Helping Old Music to a Fresh Beat

Kris DE SCHUTTER
Promoter(s): Prof. Dr. Ir. Ghislain Hoffman

Abstract— Today’s industry is fraught with problems facing legacy soft~
ware: outdated code, patched systems, and poor, incomplete documenta-
tion. In general knowledge and expertise regularly disappear. The con-~
sequences, however, may be dire unless that same —and often mission-
critical— software keeps up with the times. It has been proposed that the
advances made by the Aspect Oriented paradigm may help alleviate the
woes of long-term software development and maintenance. Unfortunately,
Aspect Orientation (AO) has yet to be truly applied outside its comfortable
home of Object Orientation. In this paper we show some tentative steps in
bringing AO to the realm of ageing languages using a framework based on
an unlikely mix of grammars, XML, and declarative meta-programming.
We have already validated this framework to some extent in the context of
two old mastodonts: ANSI-C and COBOL.

Keywords— legacy software, aspect orientation, evolution, code instru-
mentation

I. CONTEXT

HERE exists a well known principle in evolution called the

Red Queen Equilibrium, which owes its name to Lewis
Carroll’s famous book “Alice through the looking glass”. In it
Carroll ‘has the Red Queen remark: ‘here, you see, it takes all
the running you can do, to keep in the same place.’

This principle reflects that in order to keep up with an evol-
ving environment you have to keep investing energy to maintain
your place in the foodchain. It does not matter whether one
finds himself in the animal kingdom or in the competitive world
of modern industry. One either keeps up or becomes extinct.

Over the course of the last decade the digital world has seen
some great leaps in its pace, most notably through the popular-
ization of the internet. This has opened up new opportunities
for businesses, even to the extent that every service provider is
clamoring to get its products online.

Unfortunately, these services rely on software which was not
necessarily conceived with such an interactive environment in
mind. In fact, we find that most of it was —and often still is—
written in COBOL and targeted to a mainframe environment [1].
Worse still, very little knowledge about the internals of such ap-
plications survives. The reason is no surprise:

o a general lack of up-to-date documentation,

o developers moved on to other projects, or even left the firm,
- fixing systems by patching them has obscured the code, and

o why fix it if it is not broken ?

II. ASPECT ORIENTATION

IT is in this context that we find ourselves musing about As-
pect Orientation. But what exactly is it?

AQ is a relatively new paradigm, which has grown from the
limitations of Object Orientation [2]. OO takes an object-centric
view to software development, where a programmer describes

K. De Schutter is with the Department of Information Technology, Ghent Uni-
versity (UGeat), Gent, Belgium. E-mail; Kris.DeSchutter@UGent. be.

objects, how they should behave and in what ways they should
interact with other objects.!

The trouble with OO is very simple: some concepts can not
be cleanly captured in an object. Consider for instance logging
—which has become the hallmark of AO—. All objects and ac-
tions needing to be logged have to actively participate in order to
achieve this goal. Any implementation of logging will therefore
be spread out over the entire application, which makes it hard to
implement, and harder still to maintain.

AQ proposes the concept of aspects to solve this dilemma.
Aspects allow us to quantify which events in the flow of a pro-
gram interest us (through so-called pointcuts), and what we
would have happen at those points (through advice). Hence we
can ‘describe’ what logging means to an application and have
the aspect-weaver (a compiler for aspects) do the rest.

HI. WHAT AO MEANS TO LEGACY APPLICATIONS

ONSIDER being faced with an application you are hesitant

to touch; you may not understand enough of the application
even while it is mission critical to your company. Changing it
may be an unacceptable risk.

Consider then possessing a technology which allows you to
impact an application from the outside, in a way that the original
application is left unharmed. That's right: Aspect Orientation
can do this for you.

Aspects have the property that they can be ‘switched off’ in
an application simply by not including them. This is not just
a neat trick: obliviousness is a key property of any good AQ
language. It implies that your code does not have to be aware of
the presence of aspects.

This is what AO means to legacy applications: assisting in the
evolution of such applications, but also being able to instrument
them in order to retrieve lost knowledge, all the while knowing
that anything we do can easily be undone again.

IV. WHAT LEGACY APPLICATIONS MAY MEAN TO AQ

F the previous promise sounds too good to be true then know

that it actually is for the time present. AO has been born out
of needs present in OO, and has since its inception rarely left the
nest. The end result is that if you feel like playing with AG you
either have to do it in one of the recent OO languages —Java
being the most prominent subject’— or you have to build your
own weaver.

The goal of our research is therefore to enable one to do the
latter as easily as possible. What’s more, we hope that by seeing

PWhile typically achieved by constructing a hierarchy of classes, we should
point out that the problems presented here are not limited to class-based OO.
2 Aspect], http://eclipse.org/aspecty/

how AO lives and breathes inside legacy environments we may
get a better understanding of the true nature of AQO and its limits.

V. THE FRAMEWORK

O all of these ends we have set up a framework of tools
based on a mix of grammars, XML and declarative meta-
programming: Yerna Lindale®.

Fig. 1. The process of weaving.

Let us then explore this recipe for bringing AQ into a legacy
language. We refer to figure 1 for a high level view of the pro-
cess.

A. “Extend the grammar 1o allow for aspects.

The proces starts off by extending the grammar of a language
—¢.g. “foo’ in figure 1— in such a way that it accepts aspectual
descriptions. This results in a superset of the original language,
which we generally name ‘AspectFoo’.

B. Generate a parser/translator to XML.

Having established an extended grammar we can easily gen-
erate a working parser from it using the Grammar Deployment
Kir*, originally developed at the Vrije Universiteit Amsterdam.
This parser is extended by the framework to allow it to dump
the parsed sources to an XML format (figure 1, transition 1); the
exact format being a function of the original language.

The choice for XML has been made for several reasons, the
most important being that XML representations are much easier
to handle directly than the original sources.

C. Set up analysis and transformation.

Using a logic language® we can now start to reason on the
XML structure in order to detect all possible joinpoints (what
AO generally calls events in the program flow). We will -also
query for all advices and their associated pointcuts.

Once all data has been gathered we can start weaving: for
every pair of joinpoint and malching advice we fransform the
xml in such a way that the intent of the advice is fulfilled at that
joinpoint —this is the hard part—. - In the end we output the
result back to file (figure 1, transition 2).

D. Translate XML back to the original language.

This last step is pretty straightforward, and is taken care of
by the framework (figure 1, final transition). With the transfor-
mation process having woven away all our aspect definitions we
end up with a source file conforming to the orginal unextended

3Quenya (High Elvish) for “old music” —this for the fans of the works by
7. R, R. Tolkien {among them the author of this paper, obvicusly).

“htp/igdk.sourceforge. et/

SPrologCafe, httpy/fkaminari.scitec.kobe-1.ac jp/PrologCafe/

language. 1t no longer carries any advice or poinicuts within it,
and can thus be compiled into an executable version.

VI. SUMMING UP

AKE both source-to-xml and xml-to-source transforma-
tions. Add to that the ability of weaving inside xml, and
by extension you find you have been weaving within the origi-
nal source.
Using this framework we have already built a succesful As-
pectC [3] (example in figure 2), and are now in the process of
setting up a basic AspectCobol (teaser in figure 3) as well.

int advice on {(.*_1i) && ! on (print.¥) {
int 1 = 05
printf ("before %s\n", this_joinpoint (}->name]j;
= proceed (};
printf ("after %s\n", tbis~joinpoint()4>name);

return 1i;

Fig. 2. Example of an advice in AspectC.

XML transformations need however not be limited fo the
weaving of aspects. They may also be considered for such tasks
as the extraction of business rules from code [4], the assessment
of code-quality, cleaning up of code, etc.

TRACING-ADVICE SECTION.
USE AROUND JOIN-POINT
(I8 READ-STATEMENT
OR I8 WRITE~STATEMENT
) AND NOT WITHIN "TRACING".
LOGGING-PARAGRAPH.
DISPLAY "RBEFORE A FILE MANIPULATION"
PROCEED
DISPLAY "AFTER A FILE MANIPULATION".

Fig. 3. ‘Example of an advice in AspectCobol.
VII. CONCLUSIONS

F have shown that a declarative approach to the weayv-

ing of legacy applications based on an intermediate XML
representation is a very flexible and very manageable solution.
The main concepts in AQ —quantification and obliviousness—
remain valid within the context of non-OO languages. The dif-
ferences seem to be limited to the kind of events in the flow of
an application an aspect may be applied to.

ACKNOWLEDGMENTS

Prof. Hoffman and prof. Tromp for making this PhD possible.
Also everyone at ARRIBA for setting the stage in which this
PhD takes place, and for the challenges they bring to it.

REFERENCES

{1] Isabel Michiels, Herman Tromp, et al. identifying Problems in Legacy Soft-
ware: Preliminary Findings of the ARRIBA Project. ELISA workshop at
1CSM, 2003.

[2] - Gregor Kiczales, John Lamping, et al. Aspect-Oriented Programming, In
proceedings of ECOOP, 1997.

{3] Stijn Van Wonterghem. Aspect-Origntatie bij procedurale programmeer-
télen, zoals C. Master’s thesis, Gent 2004, {In Dutch.}

[4] Isabel Michiels, Kris De Schutter, Using Dynamic Aspects to Extract Busi-
ness Rules from Legacy Code. Dynamic Aspects workshop at AOSBD, 2004.

