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Abstract

Introducing an elementary form of program semantics early in the curriculum provides
a good preamble to formal methods. Microsemantics uses only the most basic
concept in formal mathematics, namely substitution , and therefore can be presented
as early as the second lecture of a freshman-level course. It can subsequently serve
as a bootstrap for gradually introducing most of the other fundamental concepts of
formal methods, leading up to formal systems specification and design.
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1. INTRODUCTION

In a recent paper [7], we argued that the best way for making formal methods widely accepted as
a self-evident part of professional practice in computer-related areas of engineering is by ensuring
that our educational institutions provide a massive injection of qualified people into industry.

Doing so requires a curriculum where formal methods are not taught in a few isolated courses, but
rather where all courses set the example by systematically using mathematical modeling — which,
as Parnas [15] aptly observes, is the major ability distinguishing professional engineers from other
designers. This view underlies the common educational model in classical engineering, but many
computer-related curricula and courses have considerable catching up to do.

Solid foundations upon which “all” other courses can rely clearly must be laid at the start of the
curriculum. In order to make the inherently high abstraction level accessible to most students, it
is necessary to provide a variety of conceptual and application illustrations and exercises. Yet, in
the first year most students still have very limited domain-specific (technical) knowledge. For this
and other reasons, it is advantageous to use domain-independent examples and problems [7].

The supply of such problems is very rich and varied. However, the solutions typically given are
meant to show cleverness rather than systematic formulation and reasoning. Often not only the
reasoning steps but even the initial casting into mathematical formulas is coarse and has serious
gaps. Filling those gaps, in both expression and reasoning, constitutes an added dimension.

In the same paper [7], we also considered a class of domain-independent problems or “puzzles”
where the gaps are due to the fact that the problem is stated procedurally or operationally, whereas
the solution must be succinct and declarative. Here is an example of such a problem, found on a
list of problems posted by Dahlke [8], but reformulated here for the sake of brevity.

A school has 1000 students and an array of 1000 lockers, all initially closed. All students walk along
the row one after the other, and the kth student inverts the state of every kth locker, that is: opens the
locker if it was closed and vice versa. How many lockers are open in the end?

Since classical mathematics has no framework for describing procedures, traditional solutions
make a fairly large jump from the informal procedural statement to the mathematical equations
from which the final solution is derived. Programming languages on the other hand are suitable
for expressing procedures, and hence can help in accurately formalizing the procedure expressed
in words in the problem statement. Here is such a formalization for the preceding example:
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for k in 1..K do (for n in 1..N do if (k divides n) then inv (L n) fi od) od ,

assuming K students and an array L of N lockers (defining inv for inversion is not relevant here).

Yet, using a programming language reduces only the gap between informal and formal problem
statements at the procedural level, but the gap between the procedure and the mathematical
equations leading to the final solution remains and has become even more visible.

Clearly, the bridge from program to equations is provided by mathematical semantics. More
specifically, we need a formalism to derive, from a program text, mathematical equations that
express the program’s behavior. This amounts to mathematically modeling a procedure in the
same spirit as an electronics engineer models a circuit by deriving, from the circuit diagram,
mathematical equations that express the circuit’s behaviour.

To be suitable already within the first weeks of a freshman-level course, the formalism should
be very lightweight, and in proportion to the perceived simplicity of the puzzles of interest. Our
approach, first outlined in [7], meets this requirement, and is therefore named microsemantics.

The principles of microsemantics, guidelines for its use and a few examples are presented in
section 2, whereas section 3 outlines how it can be used for bootstrapping fundamental concepts
such as equational reasoning, lambda calculus, propositional and predicate logic, finally leading
to formal systems specification and design at the end of such a course.

2. MICROSEMANTICS

For achieving the extremely lightweight formalism needed for the stated purpose, we use only
the most basic concept in formal mathematics, namely substitution, as described, for instance, by
Gries and Schneider in [10, Chapter 1]. This is the limited toolkit assumed at this stage.

Substitution Substituting expression d for variable v in expression e is written e[vd. An example:

(x + 3 · y)[yz+1
s= x + 3 · (z + 1) .

We use s= for syntactic equality. A warning: if parentheses in d are omitted according to the usual
conventions, it may be necessary to reinstate them for substitution, e.g., around z + 1 in the
preceding example. By an obvious generalization, v and d may be tuples, as illustrated by

(x + 3 · y)[x, y
a·y, z+1

s= a · y + 3 · (z + 1) .

Multiple (“simultaneous”) substitutions do not necessarily have the same as successive
substitutions. With the general convention that one may write e[vc [wd for (e[vc )[wd , this is shown by

(x + 3 · y)[xa·y[yz+1
s= (a · y + 3 · y)[yz+1

s= a · (z + 1) + 3 · (z + 1) .

One can see [vd as a (metalevel) syntactic operator on mathematical expressions.

Program equations The state is a tuple whose elements correspond to the program variables,
in the order and with types as declared. Let s be the tuple made from the variables themselves.
Such a variable list turns out to be useful in unifying theories [6] and in microsemantics.

The term command designates instructions as well as entire programs. A command c is modeled
as a function from states to states, defined by an axiom of the form c s = e. This is a familiar style
for defining functions in mathematics, as shown in defining square by square x = x ·x. Such axioms
are “used” or “applied” by instantiation [10, Chapter 1]; more specifically, (c s = e)[sd

s= c d = e[sd.
For substitution, commands are treated as function constants [10, Chapter 1], i.e., are not affected.

First we consider the primitive commands assignment (v := e), composition (c ; c′), selection
(if b then c else c′ fi), where c and c′ are commands and b a boolean expression:

(v := e) s = s[ve (1)

(c ; c′) s = c′ (c s) (2)

(if b then c else c′ fi) s = b ? c s c′s . (3)
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The last right hand side is a conditional expression. Its general form is b ? e1 e0, read in words
as “if b then e1 else e0” and formalized by the axiom (b ? e1 e0) = eb where b is 0 or 1. Using s as
the formal argument in (1) and (3) ensures their simple and intuitive form; for (2) it is unimportant.

The following are derived commands, since they can be defined in terms of the primitive ones.

skip = (v := v) (or, as a primitive command, skip s = s) (4)

(if b then c fi) = (if b then c else skip fi) (5)

(while b do c od) = (if b then (c ; while b do c od) fi) . (6)

Observe that microsemantics is fully minimalist in the sense that it involves no other notation than
the basic expressions and commands that may occur in the simple programs themselves and
substitution. The machinery of denotational and axiomatic semantics, which may be intimidating
if presented in the first few weeks, is bypassed. Of course, it can be introduced at a later stage.

Guidelines for use and examples As a matter of convention, we write program variables in
typewriter font (e.g., x) and the matching state variable in italic (e.g., x). This distinction has no
calculational consequences and is for exposition only: if it helps, fine, otherwise it can be safely
ignored (which is convenient in handwriting, where the distinction is easily lost anyway).

About assignment We start with an example. Assume a program with variables x and y, declared
as integers, so the state s is the pair (x, y). For the assignment x := x + y,

(x := x + y) (x, y) = 〈Axiom (1)〉 (x, y)[xx+y

= 〈Substitut.〉 (x + y, y) . (7)

Axiom (1) also covers multiple assignment, i.e., of the form (v := e) where v is a tuple of variables
and e is a tuple of expressions. An example is swapping two variables:

(x, y := x, y) (x, y) = 〈Axiom (1)〉 (x, y)[x,y
y,x

= 〈Substitut.〉 (y, x) .

Instantiating correctly Clearly (x := x + y) (2, 3) = (5, 3) by instantiating the result from (7).
More generally, recall that instantiating c s = e by [sd yields c d = e[sd and hence, for Axiom (1),

(v := e) d = (s[ve)[sd . (8)

Warning: it is tempting but wrong to write (s[ve)[sd as d[ve . Interestingly, this warning is more relevant
for advanced users prone to skip steps than for beginners who tend to apply the rules meticulously.

About program structure Observe the style of (1 .. 6), where c and c′ in turn stand for arbitrary
commands. By saying that the left hand sides (omitting s) are the only forms for commands, the
syntax is specified as well. More specifically, the structure of a program is described recursively in
the sense that it is either the most elementary command (i.e., an assignment), or a composition of
two commands, or a selection between two commands. The latter commands are again arbitrary:
each of them can again be an assignment, a composition or a selection etc.. Axioms (1 .. 6)
illustrate how a (semantic) function can be defined by recursion on (program) structure.

About composition At this stage, we can prove an interesting algebraic program property:

(c ; (c′ ; c′′)) s = ((c ; c′) ; c′′) s (exercise) . (9)

This means that (c ; (c′ ; c′′)) = ((c ; c′) ; c′′), at least for the particular state semantics
considered in this note. As is customary with associative operators in mathematics, we make
the parentheses in composition optional. We also make other parentheses optional insofar as
replacing them is “obvious” (in a formalizable way). This gives rise to an interesting illustration
about handling syntactic and semantic ambiguity, discussed elsewhere in the course.

The typical error to which we alluded in the warning about instantiating correctly is shown in the
sloppy calculation (c ; v := e) s = (v := e) (c s) = (c s)[ve , whereas (8) yields the correct (s[ve)[sc s.
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It is instructive to exercise with successive assignment. An example is swapping x and y using an
auxiliary variable z, as done by the program z := x ; x := y ; y := z. Here is a fully detailed
calculation for the final state if the initial state is x, y, z (exercise: using a, b, c instead).

(z := x ; x := y ; y := z) (x, y, z) = 〈Ax. (2)〉 (y := z) ((x := y) ((z := x) (x, y, z)))
= 〈Ax. (1)〉 (y := z) ((x := y) (x, y, z)[zx)
= 〈Subst.〉 (y := z) ((x := y) (x, y, x))
= 〈Ax. (1)〉 (y := z) (x, y, z)[xy [x,y,z

x,y,x

= 〈Subst.〉 (y := z) (y, y, z)[x,y,z
x,y,x

= 〈Subst.〉 (y := z) (y, y, x)
= 〈Ax. (1)〉 (x, y, z)[yz [x,y,z

y,y,x

= 〈Subst.〉 (x, z, z)[x,y,z
y,y,x

= 〈Subst.〉 (y, x, x) .

This shows both the power of substitution (it can do the job all by itself) and its limitations (tedious).

Selection and iteration Familiarizing the students with selection is fairly straightforward. The
equations for loops are recursive, and therefore solving them is a good introduction to recursion
and iteration. This is a topic for later in the course, as outlined next.

3. MICROSEMANTICS FOR BOOTSTRAPPING FUNDAMENTAL CONCEPTS

Microsemantics provides a running example for gradually introducing the fundamental concepts
underlying formal methods in an introductory course. The following is just an outline.

Syntax, axiomatics, semantics, pragmatics Generally it is not a good idea to burden
beginning students with technicalities. However, microsemantics offers opportunities for giving
a simple and concrete first explanation about the distinctions and relations between syntax (here:
expressions and commands), axiomatics (formal calculation rules), semantics (various views on
meaning) and pragmatics (to what purpose notation and rules are designed in a particular way).

Equational reasoning The earlier calculation already provides an example of equational
reasoning, although it involves a purely syntactic (meta-)operator, namely, —[—— for substitution.
The obvious next step is equational reasoning involving only functions and expressions in the
language (basic mathematics), for which it suffices here to mention the the first chapter in [10].

Lambda calculus Lambda notation is intuitive enough to be understood as a “finished product”.
However, after microsemantics one can provide an extra dimension, showing how to “re-invent”
lambda calculus from the pragmatics (usage) viewpoint by making optimal design decisions. We
start by analogy with the convention of partial application [5] of mathematical operators. This
means that the application of an operator to part of its argument forms an operator that can
be applied to the rest1. Using this convention for the meta-operator for substitution makes the
earlier [vd one of the possible partial applications. However, [vd has v as a “dangling reference”,
which permits only inelegant calculation rules. A different partial application that has no dangling
references2 and hence permits elegant calculation rules is e[v. For this, we adopt the alternative
notation λv.e, which is the basic form for (impure) lambda terms. Clearly, (λv.e)d = e[vd. Now we
can also rewrite axioms of the form c s = e as c = λs.e. For instance, axiom (1) can be written

(v := e) = λs.(λv.s)e .

Similarly, lambda combinators can be designed for composition and selection, which readers
familiar with lambda calculus will see as straightforward. This sets the stage for presenting formal
calculation rules for lambda terms [2] followed by a first introduction to variable-free expression
with combinatory logic [2] as an archetype, and generic functionals [4] for practical use.

1This must not be confused with currying: it pertains to an operator taking a tuple as its only argument, and a partial
argument then consists of some elements of the tuple.
2For the “insiders”: not to be confused with free variables; these may still be present.
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Propositional and predicate logic As soon as programs involve a few conditionals and
domains of discourse other than basic arithmetic, the need for propositional and predicate logic
arises, and can be satisfied by the proper chapters in [10] or by our own functional variant [3, 5].

Induction As soon as programs with loops are considered, the equations describing their
behavior are recursive, and calculational reasoning about this is best supported by induction.
We have found that notions about induction that students may have retained from previous
courses, e.g., in high school, may lead them into all kinds of pitfalls. Most typical errors amount
to instantiating the induction hypothesis. So here is the opportunity for setting things straight
by explaining the structure of inductive proofs, the relation with well-foundedness, various proof
styles, other forms of induction than over numbers only (structural, e.g., over lists) and so on.

Relations In the form presented, microsemantics uses ante/post functions, which covers only
deterministic programs. By analogy with certain state equations in elementary mechanics [6], we
introduce ante-expressions 8e derived from expressions e by replacing all state variables v by 8v
(using ante-quotes), corresponding to the state before a command is executed. Note that, by this
convention, 8e = e[s8s. Similarly, e′ = e[ss′ for post-expressions corresponding to the state after a
command is executed. The functional model of the form c s = e (for a command c) can thereby
be generalized to a relational model of the form3 s c s′ ≡ p as Hehner’s book [11] if only one kind
of semantics is wanted, or 8sRc s′ ≡ p as in [6] if several semantics are wanted. Hence relations
pave the way to nondeterministic programs and formal specifications. Furthermore, at this stage
of the course, a sufficient basis is available for discussing extremal elements (maximum and
minimum, greatest and least, upper and lower bounds), the various kinds of orderings (preorder,
partial order etc.) most encountered in the theory and practice of programming, and the various
styles of calculating with relations (point-wise, point-free).

4. RELATION TO OTHER COURSES AND TOPICS

Formal specification and design of systems For a first-year course, the preceding material
will usually need spreading over a complete semester (say, 2 lectures and 2 exercise sessions4

per week during 12 weeks) for allowing the students to develop adequate understanding and skills.
Yet, it would benefit from further consolidation and practicing by a second semester on formal
systems specification and design. The emphasis can be on systems theory and hybrid systems
(in the spirit outlined by Lee and Varaiya [14]) or on software systems (program semantics, model
checking etc. [13]) depending on whether the course is meant to be EE or CS oriented.

Courses on programming Optimally, a course as outlined in Section 3 should start no later
than introductory programming, allowing the latter to be taught with proper foundations and
attitudes. Moreover, for introductory programming, functional languages would be most suitable,
although few universities seem to have the courage to make such a decision. Its functional style
makes microsemantics a convenient early link between imperative and functional languages.
However, it is meant only as a bootstrap assuming minimal prerequisites, whereas, for realistic
program derivation, practical methods in the line of axiomatic semantics must be covered [6, 11].

Courses on formal semantics Formal semantics is to the software engineer what device and
circuit theory is to the electronics engineer. Its elimination from certain curricula (in favor of basic
courses on programming languages that any engineering or CS student should be able to learn
independently as part of the preparation for the exercise sessions of other courses) is unjustified.
However, a course as outlined in Section 3 would lower the threshold for (re-)introducing formal
semantics in the spirit of unifying theories of programming [6, 12]

Taking microsemantics as an introductory example, its unification with axiomatic semantics was
outlined earlier in the context of relations. Here we outline its unification with the classical
denotational style. Let the denotational-style meaning functions be C for commands and E for
expressions. For instance, for single-variable assignment, C (v := e)σ = (v 7→ E e σ) >©σ where,

3Aside: Hehner does not use antequotes, and just writes s. In [6] we show when and how antequotes are convenient.
4Assuming 75 minutes each, the standard at Ghent University. Arguably, for lectures 3 x 50 min. is better than 2 x 75 min.
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as usual (up to notational differences), the state σ is a function from variables to denotations, 7→
makes maplets, and >© is function overriding. Since the interpretation of mathematical equations
is common to both semantics and hence trivial for the unification, we factorize it out and take
the common denotation domain to be the set of expressions, keeping everything purely syntactic.
Writing µ for the mapping from denotational-style states to microsemantics-style states, unification
is established by proving µ (C c σ) = M c (µσ) for any command c and denotational-style state σ,
where we made the microsemantics denotation function M explicit just to eliminate its hitherto
privileged status. For instance, for assignment we must prove µ ((v 7→ E e σ) >©σ) = (s[ve)[sµ σ.
Using the properties of generic functionals [4], this takes only a few lines.

5. CONCLUSIONS

We have outlined how a first-year preamble to formal methods can be constructed around
microsemantics. Of course, for the sake of diversity, other kinds of application examples and
problems must be included as well, preferably domain-independent [7] for the majority, but also
some domain-specific cases requiring only prior knowledge from high school or parallel courses.

Our own courses of this kind [3] emphasize clean formalization and calculational reasoning [10]
right from the beginning, placing the insights gained from Computing Science [9] at the disposal
of our students. Avoiding poor practices is always easier than correcting them afterwards.

A final practical remark: microsemantics is too recent for having been incorporated in [3], but will
appear in a future version. We hope that, meanwhile, other teachers may benefit from the idea.
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