Sep S % LN

g

Web Services-based Middleware for QoS Brokering
of Media Content Delivery Services

Sofie Van Hoecke, Kristof Taveirne, Koen De Proft, Filip De Turck, Bart Dhoedt
Department of Information Technology
Ghent University, Ghent, Belgium
fax: +32 9 264 9960 - tel: +32 9 264 9970
sofie.vanhoecke @intec.ugent.be

Keywords: Web services, multimedia, broker, dynamic service selection, service composition, performance,

Abstract— Powerful computers and affordable digital media ap-
pliances result in a rapid growth of possibilities in the field of
multimedia applications. There has been a significant increase in
creation and use of multimedia content. Nowadays everybody can
be treated as a potential creator and user of multimedia content.
In order to deliver multimedia services to end-users, many parties
are integrated and a series of Web services is accessed. A Web
service in the composition can become unreachable by a number
of circumstances, which requires run-time actions to replace it
by ancther compatible Web service. A Web service can also
perform less well than guaranteed, which also requires action in
order to fulfill QoS requirements. To answer these requirements,
we designed a broker middleware offering dynamic selection
and composition of Multimedia Content Delivery services and
automatic load balancing of these services over the available
application servers. Since users want fast and reliable connections
and they do not really care what is happening in the background,
the broker platform transposes all services in a transparent and
similar fashion, hiding for the users if it concerns a simple or
composed service and thus simplifying required user interactions.
The broker architecture intercepts all service requests and makes
sure those requests are redirected to the best provider server, even
in the case of composed services. The architecture will also allow
the automatic fulfiliment of QoS requirements, such as response
time, availability, quality and price.

1. INTRODUCTION

With the rapid growth of possibilities in the field of
multimedia applications, there has been a significant increase
in creation and use of multimedia content. Nowadays
everybody can be treated as a potential creator and user of
multimedia content. In order to deliver multimedia services
to end-users, many parties are integrated and a series of Web
services (authentication, billing, streaming, etc.) is accessed,
which are either not or only partially included with the actual
application. Two problem dimensions can be distinguished
here. On the one hand is the problem of security. End-users
who pay for multimedia services want to be sure that there
are no privacy leaks and that the content is delivered to them
in a secure way. Therefore, the author presented in [1] an
architecture for secure Media Content Delivery (MCD) using
the combination of both SSL and WSS. Since however many
parties are integrated in advanced MCD services, users want
to reduce their trusted relationships. On the other hand is
the problem of fulfilling QoS requirements. A Web service

in the composition can become unreachable by a number of
circumstances, which requires run-time actions to replace it
by another compatible Web service. A Web service can also
perform less well than guaranteed, which also requires action
in order to fulfill QoS requirements. Both problems, reducing
trust relationships and fulfilling QoS guarantees, were not
addressed in [1} and has been the subject of recent research.
In this paper, we detail the design of a broker architecture that
allows for dynamic selection and composition of services,
and simplifies required user interactions.

Integration of multimedia services and applications is however
a complex task since these services and applications are built
by different vendors, using different data definitions and
exchange standards. Here Web services can gain more and
more importance for the integration of heterogeneous MCD
components due to their standardised interoperability and
compatibility with other languages.

A. Web service technology: State-of-the-art

In view of the broad support for Web services and common
XML-based standards such as SOAP, WSDL and UDDI, Web
services are a promising concept for the integration of hetero-
geneous software components. By means of this technology,
applications can easily be distributed over the Internet and
expose well-defined functionality as a Web service, which con-
sumes and produces XML-messages over HTTP. Based on the
exchange of structured text messages, the interaction abstracts
the underlying technologies. Consequently, extending existing
services with a Web service interface enables integration [2].
Since Web services can provide overlapping or identical
functionality, albeit with different QoS, a choice needs to be
made to determine which services are to participate in a given
composition. Web service composition however has a twofold
meaning. On one hand composition in the sense of granularity
consists of encapsulating Web services in a larger part and
exposing this as a Web service. On the other hand composition
in the sequencing sense defines the invocation order of Web
services. Thus composition consists of those activities required
{6 combine and link existing Web services (o create a variety
of new and complex processes.

e

o

There are however many existing approaches to service com-
position, ranging from abstract methods to industry standards.
Service composition is still not standardized, nor does it
include definitions of the key requirements that every compo-
sition approach must satisfy (such as scalability, dependability
or correctness). The first-generation composition languages
WSFL and WSCI were incompatible and therefore second-
generation languages, such as BPEL4WS, were developed
combining WSFL and WSCI with Microsoft’s XLANG spec-
ification.

Business Process Execution Language for Web Services
(BPEL4WS) [3] is an XML language that is currently being
standardized by OASIS and which supports process-oriented
service composition. BPELAWS provides a language for the
description of business processes and transactions, support-
ing both orchestration and choreography. On one hand, in
orchestration a central process takes control of the involved
services and coordinates the execution. On the other hand,
choreography does not rely on a central coordinator. Each
Web service involved knows when to execute and with whom
to interact. Within BPEL, execuiable processes allow you to
specify the exact details of business processes and provide
the orchestration support, while the abstract business protocols
allow specification of the public message exchange between
parties only, thus focusing more on Web services choreogra-
phy. BPEL4WS is built on top of XML, XML Schema, WSDL
and UDDI, and is the most well established orchestration
technology for Web services.

Web service flow specification languages, such as BPELA4AWS,
describe in which order messages have to be exchanged
between services in a flow specification. The Semantic Web
community developed however their own flow specification
languages using semantic annotations where preconditions and
effects of services are explicitly declared in the Resource
Description Format (RDF) using terms from pre-agreed on-
tologies. Thus while BPELAWS is more business oriented, it
is also possible to composite services with the Semantic Web
alternative OWL-S.

Using OWL-S [6], a client application could discover a
sequence of independent services that could ultimately help
it to satisfy its information goal. Since dynamic composition
of services is not yet provided by OWL-S, an additional
proprietary Al planner must be implemented at the client level.
OWL-S simply provides for the discovery of services, not their
automatic composition. Automatic composition would require
more planning logic at the application layer in order to enable
the applications themselves to compose coliections of services
into a more complicated operation. However, OWL-S does
support the manual composition of services into composite
processes to solve a predefined goal.

Both BPELAWS and OWL-s are not fundamentally different
but have a different approach, as well as their advantages.
BPEL4WS is strong on orchestration and info sharing, while
OWL-S is strong on goals, activitdes and discovery, With
regard to Web service composition, both solutions will need to
co-operate in order (o ensure that one standard will eventually

emerge for the all-over composition of Web services,
However QoS (Quality of Service) requirements such as re-
sponse time, availability and price can also influence and ham-
per service composition. Therefore, in this paper, we present
a middleware platform for brokering of composed services
with QoS guarantees. Implementing this brokering middleware
by means of Web service technology creates the required
integration of heterogeneous services, taking into account QoS
requirements, and offers an advanced set of composed services
crossing multiple service and data providers. This way the
required user interaction is reduced to authenticating (e.g. by
means of ¢ID, smart card or login/password) and selecting one
of the (composed) services.

B. Application cases

The presented architecture covers a wide range of application
cases. For example eCommerce can benefit from QoS bro-
kering if a call center for example negotiates with multiple
credit checkers, in order to acquire payment validation. Based
on the call center load, the broker middleware can divide the
requests over multiple credit checkers in order not to lose or
displease clients. Another case can be found in eHealth where
integrated and composed eHomeCare services (eRecord, ePre-
scription, teleMonitoring, etc.) can cross health care providers
and medical databases. QoS brokering can also be applied in
B2B (Business to Business) for optimizing the virtual supply
chain of delivery companies. QoS brokering can select delivery
services with the best QoS (e.g. delivery time, quality, price),
resulting in smaller stocks and advanced efficiency. On the
other hand, QoS brokering can also be useful in pure software
design, planning and measuring the required infrastructure,
as well as in offline tuning of load balancing and brokering
strategies. Finally Multimedia Content Delivery is another case
that can benefit from QoS brokering. The broker middleware
can dynamically select and compose the needed services (e.g.
services for broadcasting, streaming, payment and security) in
order to set up for example a video-on-demand stream meeting
the request (e.g. high quality, no delay or limited output
device). The deployment of the QoS brokering middleware
for MCD is described in this paper.

C. Related work

Related work in this area focuses mostly on Web service
brokers limited to service lifecycle management. There is
however a need for service brokers taking into account
QoS in order to ensure total response time of composed
services, prioritize time-critical services or ensure bandwidth
or robustness. In [8] a QoS broker model is described for
general distributed systems. Contrary to general distributed
systems, Web services have a dynamic nature in terms of
service availability and the clients invoking them. Brokers
must support more flexible service selection and be able
to adapt to the dynamic server load. In [9] a Web service
architecture supporting QoS is presented. However, once
the services are selected and the link is established, the
client communicates with the server directly without any

broker intervention during the actual service process. Due
to the dynamic nature of Web services, this introduces QoS
shortcomings since abrupt failure or unavailability of services
needs dynamic selection of another equivalent service. This
broker also leaves composition as the client’s responsibility.

The remainder of this paper is structured as follows:
Section II describes our QoS brokering middleware, while in
section HI some performance results are presented. Finally,
in section IV, we will highlight the main conclusions and
identify some future work.

II. QOS BROKERING MIDDLEWARE

Figure 1 depicts the open QoS broker architecture, presented
in this paper.

As can be seen in this figure, the architecture contains three
different levels of stakeholders. Authentication can be pro-
vided by a third party. Next to this, there’s a broker domain
and several provider domains. If the interfaces to the broker
domain are respected, other legacy systems in the provider
domains are possible, such as Mosix [10] or Unicore [11].
However we believe in the simplicity and openness of our
presented solution for the provider domains.

First the main functions of the architecture are described after
which a detailed description of each component is given.

A. Functional description

The architecture is built around a facade portal. This portal
contains a UDDI (Universal Description, Discovery and Inte-
gration) registry containing all the services offered by the plat-
form, i.e. the simple services offered by the service providers,
as well as advanced composed services only possible by the
platform. The platform however transposes all services in
a transparent and similar fashion, hiding for the users if it
concerns a simple or composed service and thus simplifying
required user interactions (see figure 2a).

This portal intercepts all service requests and makes sure those
requests are redirected to the best provider server, even in the
case of composed services. Since the broker platform has to
be able to interpret the service request, the requests are trans-
formed into a composition flow chart (see figure 2b). In order
to select the best suited servers for fulfilling the request, the
middleware queries for interfaces of all the possible matching
services. After filling in this information into the flow charts
(see figure 2c), the middleware requests for the appropriate
QoS metrics. By using advanced broker algorithms, the best
path through the flow chart is chosen. Through this flow
processing, service sessions are assigned to the best suited
provider server, based on the capabilities of the server (which
service(s} does it implement) and its QoS characterisiics such
as load, availability, service price and the already running
services. This flow processing is described more in detail in
section 4. Afterwards, the middleware platform aggregates the
resuit sets, translates this flow response into a service response
and returns it to the requester.

S —
i WS WS
: Proiider & Provider 8
WS 7
W8z
f Wse ProviderC
ws I i, e
compostion. | —v : [:JL} Qﬁ
l WS3 ws: | [ws: WSz
; Frovider b Provider £ Provider B
i H
WS I | : 7
4
Sl WSz
I it Provider A
(a) (b} {c)
Fig. 2. Service composition flow: (a) Transparent services offered by

the Broker Facade (b) Composition flow chart (¢c) Matching services for
composition

B. Component description

The architecture consists of the following components:

o Broker Facade (BF): The Broker Facade forms the
central portal of the brokering middleware. It intercepts
incoming service requests from authenticated users, re-
quests needed credentials from the Credential Manager
(CM), adds them to the service requests and forwards
these requests to the Mapping Service Flow (MSF) com-
ponent.

o Credential Manager (CM): The Credential Manager
contains user credentials based on the registration input or
profile. Incoming service requests from the Broker Facade
will be adjusted with these credentials before being
forwarded to the Mapping Service Flow componernt,

o Mapping Service Flow (MSF): The MSF translates
incoming service requests into corresponding flow charts
and forwards these flows to the Flow Processing Service
(FPS). Incoming flow responses are translated back to
service responses before being forwarded to the Broker
Facade.

« Flow Processing Server (FPS): The Service Direc-
tory Repository (SDR) returns the Application Servers
(AS) offering the requested services. Based on the QoS
information provided by the Pool Management Server
Coordinator (PMSC), the Flow Processing Server can
select, by using advanced broker algorithms, the optimal
Application Servers for executing the services, fulfilling
the QoS requirements.

« Service Directory Repository (SDR): The Service Di-
rectory Repository is implemented by exploiting the
UDDI technology, a framework for the description and
discovery of services. The architecture contains one or
more linked Service Directory Repositories. Here all
services offered by the Application Server are registered

authentication

GEIVICE l ET

! 3 party authentication provider
H

reguast
~J Broker Facade

& | BEIVIGE $
&
redentia reguest

o8

|

?misﬁacff

'flﬁﬁ“fi

i&x:aw%e

registat AS

E
H
and services 1

U——

Tmsu!&et

register AS
s

5

DDt

Happing
servica-flow

Broker domain

T metric

B neusli

N

upddate PMSC

Aregister QM
e

] Provider domains

Server 1,

 Serverig

update QoS info "
A i H

‘,,u_‘L_l,.”L_,

1 authentication

Fig. 1. QoS brokering middleware platform. The following components are shown: Credential Manager (CM), Broker Facade (BF), Mapping Service
Flow (MSF), Flow Processing Server (FPS), Service Directory Repository (SDR), Service Execution Manager (SEM), Pool Management Server Coordinator
(PMSC), Pool Management Server (PMS), Application Server (AS) and QoS Monitor (QM).

and described in detail (location, business properties,
service properties, ete). The Service Directory Repository
contains also the Service Level Agreements (SLAs), con-
taining the agreed capability information such as service
availability, maximum response time, price, etc, When a
new Application Server is added to a pool, the Service
Execution Manager (SEM) registers this server and his
services to one of the Service Directory Repositories.
Since all Service Directory Repositories are referencing
cach other, it appears like one single SDR. Creation and
deletion of pools, as well as registering a new Application

Server to the Service Execution Manager of a certain
pool, is done through the Pool Management Interface of
the Service Directory Repository. When a new pool is
created, both an Service Execution Manager (SEM) and a
Pool Management Server (PMS) for that pool are started.
Service Execution Manager (SEM): The Service Exe-
cution Manager manages a pool of Application Servers.
When a new Application Server (AS) is started, it has
to register itself to the SEM of that pool. The SEM then
registrates that Application Server and its Web services
to the Service Directory Repository (SDR). When new

Web services have to be started on specific Application
Servers, the FPS contacts the SEM of the pools these ASs
belong to. The SEM then forwards the start commands to
the correct AS. Result sets from these Application Servers
however are not sent back to the SEM, but directly
forwarded to the FPS.

» Application Server (AS): Application Servers execute
the actual Web services. Each Application Server can
implement one or more Web services, can have its
own capabilities and can provide services using different
programming languages. When a new AS is installed in
the system, it must register itself to the Service Execution
Manager (SEM) of the pool it belongs to.

o Pool Management Server Coordinator (PMSC): The
Pool Management Server Coordinator stores an overview
of the QoS information of each server running an AS/QM
pair. This information is updated at regular intervals by
the Pool Management Server of each pool. At regular
time intervals, an overview of the QoS of the platform is
pushed from the PMSC to the FPS. When executing the
dynamic selection algorithm, the FPS can request more
detailed and up-to-date information about each server
running an AS/QM pair from the PMSC.

o Pool Management Server (PMS): Each pool has its own
Pool Management Server. It gathers the QoS information
of the monitors in the pool. At regular intervals, the QoS
information of the whole pool is reported to the Pool
Management Server Coordinator (PMSC). When a new
Application Server is started, the QoS Monitor (QM) that
it is paired with has to register itself to the PMS of the
pool it belongs to.

o QoS Monitor (QM): Each Application Server is paired
with a QoS Monitor that monitors Quality of Service
(QoS) characteristics of the machine it is running on.
Different QoS parameters can be measured: CPU load,
memory usage, load average, availability, price, etc. At
regular intervals the QM reports the QoS of its machine
to the Pool Management Server of the pool it belongs to.
When a new AS is started, the QM it is paired with has
to register to the PMS of its pool.

C. Flow processing

In order to process the composition flows, the FPS component
implements advanced broker algorithms for dynamically
selecting and composing services, based on the capabilities
of the Application Servers and their QoS characteristics
such as load, availability, service price and the already
running services. The broker uses heuristics for solving the
Constrained Shortest Path Problem (CSP) in order to find
a path solution and select the required services. Therefore
the selection of Web service endpoints, that can provide
the requested level of QoS, needs to be made at runtime
in order to achieve the best possible execution path of the
business process at that particular point in time. Since both
BPEL4WS and OWL-S allow us to leave out the hard coded
endpoint references of the partners of the business process,

adding this information at runtime when it is needed, the
FPS component will support both OWL-S and BPEL4WS
standards. Since however commercial solutions are vet to
embrace the OWL-S technology, only BPEL4WS processing
is currently implemented in the FPS. We are however planning
to support OWL-S in future as well.

Within BPELAWS, the relationships between the partners of
a business process are described using partnerLinkTypes. In
a conversation between two partners one or each of these
partners are assigned a role. This role element refers in turn
to a portType defined in an available WSDL file. This WSDL
is in fact an abstract description of the Web service, meaning
a concrete reference to an endpoint is not defined.

<plnk:partnerLinkType name="VoDPartnerLinkType">
<plnk:role name="source">

<plnk:portType name="medianet:VoDPortType>
</plnk:role>

</plnk:partnerLinkType>

The BPEL process is a composition of abstract services,
meaning that only logical names and services interfaces
are used. End-point resolution happens at later stage. A
PartnerLink is by this definition strictly a logical construct.

A Partner Link Type points to a WSDL portType with the
abstract interface of a Web service. In order to establish the
relationship between the abstract interface and the physical
deployment of the Web service, the partnerLink needs to
be resolved to a concrete endpoint. BPEL uses the concept
of endpoint references. These are defined by the WS-
Addressing specification and allow a dynamic identification
and description of service endpoints. These endpoint
references contain on one hand the address of the service
endpoint, and on the other hand policies to describe amongst
others, the requirements and capabilities of a service endpoint.

<wsa:EndPointReference ... >
Xmlns:cen=http://medianet.iben.be/services/Vob>
<wsa:Address>http://medianet.ibcn.be/services/VoD
</wsa:Address>
<wsa:PortType>cen:VoDPortType</wsa:PortType>
<wsa:ServiceName PortName="VoD">

Cen:VoD
</wsa:ServiceName>
<wgp:Policy ... >

</wsa:EndPointReference>

The WS-Addressing specification standardizes the way Web
services are referenced without binding them to a specific
transport mechanism. For each partner role defined in a partner
link an endpoint type can be defined using a process deploy-
ment descriptor file. A first important endpoint type is the
Dynamic Endpoint Type. This type indicates that the endpoint
reference is provided within the BPEL process. This way the
location of the Web service can be assigned dynamically by
simply using an Assign activity in the BPEL-flow. A second
important endpoint type is the Invoker Endpoint Type. This
type indicates that the invoker of the Web services defines what

instances must be used to handle the request. This can be the
case when the client or invoker has a preferred Web service
instance. Using the dynamic endpoint type, complex path
algorithms can be used to calculate the optimal path for the
business process execution. Even authentication information
that travels along in the SOAP headers of the process flow
can be used to make a decision about the endpoint references
that should be used for that particular user.

The WS-Addressing specification allows for a WS-Policy
section to be embedded in the WS-Addressing EndPointRe-
ference block. This means that extra criterias are possible
to make a selection between the different available endpoint
references based on pure policy-information. Our heuristics
for the Constrained Shortest Path Problem use this policy
information in order to make a choice by using Pick activity
in the process flow.

Supplied with the service interfaces and corresponding service
QoS information, the FPS can select the best path through the
chart, satisfying the required end-to-end QoS constraints (see
figure 3a). However when one of the components suddenly
slows down or becomes unavailable, the FPS chooses an
alternative path through the flow chart (see figure 3b). This
selection and composition process is repeated one or more
times until the path is completed.

i

H ;‘—‘““"{-‘—‘j
\/ W3 WS WS WS
Prowider A Frovides B Prosiicder A Provider B
\/ { J g WSz
Lﬁ;{zﬂwdeﬂ: C;) § Provider
— [é
\/(wss | [ws WS WSs WSz WSz
| ProviderD | | Provider B Provider 8 ProviderD | | Provider E | | Provider B
N I S l —
X | WS4 [ws: WSi WSz
Prosicis D | % Providor A Frocde & Presvices &
(a} {b)
Fig. 3. Handling service failure

D. Component interaction

Figure 4 depicts the sequence diagram, presenting the
component interactions within the middleware platform.

An Application Server is paired with an QoS Monitor (QM),
that monitors Quality of Service characteristics (such as CPU
load, memory usage, load average and price) of the machine
it is running on. The Application Servers are organized into
pools. Pools can be created and removed through the Pool
Management Interface of the Service Directory Repository
(SDR), implemented by exploiting the UDDI technology.

Each pool has one Service Exccution Manager (SEM) compo-
nent as well as one Pool Management Server (PMS). When a

new Application Server is installed into the system, it must
register itself to the SEM of the pool it belongs to. The
SEM consequently registers the AS and its Web services
to the Service Directory Repository. When a Web service
has to be started on a specific Application Server, the FPS
contacts the SEM of the pool that Application Server belongs
to. The SEM then forwards the start service command to
the correct AS, taking into account selection information
from the Pool Management Server (PMS). At registration
time, the Application Server and broker negotiate Service
Level Agreements (SLAs) containing capability information
such as maximum response time, minimum availability or
fixed price. These SLAs are stored at the Service Directory
Repository. The Pool Management Server (PMS) gathers the
QoS characteristics from the monitors in its pool. At regular
time intervals, the PMS pushes this information to the Pool
Management Server Coordinator (PMSC). This way the PMSC
has an overview of the QoS of the total platform. When
selecting the services, the FPS can also request the PMSC
more detailed QoS information about specific pools or servers.
In order to alleviate the users from privacy and security issues,
an additional component is present in the framework, namely
the Credential Manager. Users only have to authenticate to the
framework (by means of eID, smart card or login/password).
Once authenticated, the Broker Facade will investigate the ser-
vice requests, query the needed credentials from the Credential
Manager and forward the credited requests to the MSF.

E. Privacy and security

As already stated, the Credential Manager alleviates users
from privacy and security issues. Relationships and profiles
for access control, when using multiple services, cannot be
stored by each individual service. Therefore the Credential
Manager can be seen as an Assertion/Credential Federation,
grouping all these assertions. By adjusting requests with
the required credentials, the brokering middleware supports
“content and role based” access control and filtering. Services
then only have to map the profiles onto authorization access
rights. By only loading users with authentication, the brokering
middieware is open for all kind of users, both technical and
non-technical.

F. Scalability considerations

In the middleware platform scalability is ensured both in the
broker domain as well as in the provider domains.
Scalability in the broker domain is ensured by avoiding single
point-of-failures and bottlenecks by replicating components.
The architecture contains one or more linked Service
Directory Repositories, containing all services offered by
the Application Servers described in detail, as well as the
Service Level Agreements (SLAs). Since all Service Directory
Repositories are referencing each other, it appears like one
single SDR and scalability is ensured. Besides the SDR,
multiple instances of the other components can exist as well,
clustered and interacting with the system simultaneously.
This architecture ensures also scalability in the provider

e Qi o QL o B g N R BN B Qs

- BRIOE 1SS e

el TR

ks@zxcws
ard sordoss

Rt AS—gp bomlogister (-9

oo |
S 3G AT Do
el 3025 vV

Ls of matching g

Sk

Aggregaty
g

b fRERGLES] TS 158 WHBD DELRGSAT Yo o

~~~~~~~ o k5 R0 e o e e

i St ST ot

R

Berdice sesponsa

Fig. 4.

UML sequence diagram of QoS brokering middleware. The communication between the following components is shown: Broker Facade (BF),

Credential Manager (CM), Mapping Service Flow (MSF), Flow Processing Server (FPS), Application Server (AS), Service Execution Manager (SEM),
Service Directory Repository (SDR), QoS Monitor (QM), Pool Management Server (PMS) and Pool Management Server Coordinator (PMSC).

domains by organizing the Application Servers into pools.
Pools can contain multiple servers, each belonging to one
single provider. A provider however can choose to create
multiple pools, for example grouped by functionality or
performance.

III. BROKER PERFORMANCE

Our broker currently uses Oracle’s BPEL engine for the
BPEL4WS flow processing and Oracle9i database as dehy-
dration store. Since Oracles BPEL engine is a native BPEL
process manager, this result in both performance and scalabil-
ity advantages over other solutions.

However for having an idea of the performance overhead
introduced by using the broker, we did some performance tests.
At first, in order to know the invocation times of the BPEL
engine, we tested the overhead of calling a single Web service
through the BPEL engine, versus calling the Web service
directly. The results can be found in figure 5. As can be seen
in this figure, calling the Web service via the BPEL engine,
generates an overhead of 10 a 20 percent, compared to calling
the Web service directly. The overhead, or thus difference
between these two time curves, is the invocation time of
the BPEL engine, in function of the number of simultaneous
requests.

However implementing the service functionality into BPEL
itself as a BPEL process, without calling a standalone Web
service (neither directly or through BPEL), results in huge per-
formance gains. Unfortunately, besides the huge performance

1s]
on

gains, implementing service functionality into BPEL itself as
a BPEL process is limited to simple data manipulation using
the basic and structured BPEL Activities and XPath expres-
sions. In order to build more sophisticated applications, either
simple or composed services, one has to call external Web
services through the BPEL engine. There are however BPEL
extensions like BPELJ [12] that allow extra functionality in
BPEL processes.

Performance of BPEL engine

250

i SEMNCE i plemented in BPEL
e Sprce call drectly, without BPEL
Senice call da BPEL

200

Response time (ns)

5 6 7
Huimdrer of sitnulaniesus requests

Fig. 5. Response times of calling Java Web service directly compared to
calling through BPEL engine

BPEL is however a language for composing multiple services
into an end-to-end process. Now we know the engine’s per-
formance, we can investigate the overhead of dynamically
selecting the services by the broker. Figure 6 presents the

Invocation time
BPEL engine



performance differences for composing two Web services
using static endpoints versus dynamically selected endpoints
in function of the number of simultaneous requests. As can
be seen in the figure, choosing at runtime between multiple
equivalent services for fulfilling QoS requirements of the
users, results in a performance loss. A Web service in the
composition can however become unreachable by a number
of circumstances, which requires run-time actions to replace
it by another compatible Web service. A Web service can
also perform less well than guaranteed, which also requires
action in order to fulfill QoS requirements. By using dynamic
endpoint selection, the broker can act at run-time in order to
fulfill QoS guarantees. The broker middleware will also hide
for the users if it concerns a simple or composed service and
will thus simplify required user interactions. These advantages
by using the broker middleware will cost some performance,
but since composition standards like BPEL4WS and OWL-
S are still developing and tools are not yet optimized to
provide this technology, one can still expect optimizations in
performance.

Dynamic endpoint selection versus static endpoint

1000
900
800 1
7009
600 A
500 4
400 1
300 A
200 4.
100 4 >

0 : .

1 2 3 4 5 6 7 8 9 10

- dynamic endpoirt selection
—e—static endpoirts

Response time {ms)

Fig. 6. Response times for composing two services using dynamic endpoint
selection versus static endpoints

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a Web service based brokering
middleware platform, offering dynamic selection, composition
and automatic load balancing of services, guaranteeing QoS
requirements, Those Application Servers and Web services
may be implemented by different vendors, using different
programming languages and data definitions. Service providers
only need to provide a Web service interface on their appli-
cations and the platform takes care of all the rest.

The middleware platform is built around a Broker Facade
which intercepts all incoming service requests and makes sure
those requests are forwarded to the best Application Server,
even for composed services. The Broker Facade forwards
these service requests to the Mapping Service Flow component
which translates the service requests into an internal compo-
sition flow chart. This Broker Facade abstracts the underlying
technical middleware and simplifies required user inieractions.

Besides simplifying required user interactions and service
provisioning, the middleware platform is also highly scalable
at both broker and provider level.

These advantages, obtained by using the broker middleware,
will cost some performance, but since composition standards
like BPEL4AWS and OWL-S are still developing and tools are
not yet optimized to provide this technology, one can still
expect optimizations in performance.

Due to the generic approach, this brokering middieware covers
a wide range of application cases in Multimedia Content
Delivery, as well as in eHealth and B2B.

We will continue the design of advanced broker algorithms
for selecting and composing the services, fulfilling QoS re-
quirements. We will also extend the FPS component in order
to support OWL-S in future as well. Moreover, single point-
of-failure components will be splitted into multiple instances
that run simultaneously in order to increase the scalability of
this platform.

V. ACKNOWLEDGMENT

This work was partly funded by the European Commission
through the IST project MediaNet and the FWO-project
"Intelligent dynamic brokering of Web services based on
performance models”.

Sofie Van Hoecke would like to thank the IWT (Institute for
the Promotion of Innovation through Science and Technology
in Flanders) for financial support through her Ph.D. grant.
Filip De Turck acknowledges the FW.0.-V. (Fund for Scien-
tific Research-Flanders) for their support through a postdoc-
toral fellowship.

REFERENCES

[11 S. Van Hoecke, W. Haerick, G. De Jans, F. De Turck, E. Laermans,
B. Dhoedt, P. Demeester, Design and Implementation of a Secure Media
Content Delivery Broker Architecture, The 2005 International Symposium
on Web Services and Applications (ISWS’05), Las Vegas, USA, 2005.

[2] A Darwin Partners and ZapThink Insight, Using Web Services for
Integration, http://www.xmlorg/xml/wsi.pdf, 2002.

[3] T. Andrews, F. Cubera, H. Dolakia, J. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weeravarana,
Business Process Execution Language for Web Services, 2003,

[4] The Business Process Modeling Language, Business Process Management
Initiative, http://www.bpmi.org/.

[5] Web Service Choreography Interface, W3C, http://www.w3.org/TR/wsci/.

[6] The OWL Services Coalition, OWL-S: Semantic Markup for Web Ser-

vices, Technical White paper (OWL-S version 1.1), 2004,

A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin,

S. A. Mcllraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng,

DAML-S: Semantic Markup For Web Services, Semantic Web Working

Symposium, California, 2001,

{81 K. Nahrstedt, J.M. Smith, The QoS Broker, IEEE Multimedia Magazine
201y, 1995,

{91 T. Yu, K. Lin, The Design of QoS Broker Algorithms for QoS-Capable
Web Services, Proceedings of the 2004 IEEE International Conference
on e-Technology, e-Commerce and e-Service, 2004,

[10} A. Barak, O. La’adan, The MOSIX Multicomputer Operating System
for High Performance Cluster Computing, Journal of Future Generation
Computer Systems, 13 (4-5) (1998) 361-372.

{11} Unicore, http//www.unicore.org.

[12] IBM and BEA, BPELJ: BPEL for Java technology, http//www-
128.ibm.com/developerworks/library/specification/ws-bpeli/

{71



SWWS'06

The 2006 International Conference on Semantic Web
&Web Services

Foreword Author's Index

Session: ONTOLOGIES AND RELATED ISSUES

A Social rk Ontol for Semanti En llaboration
Thomas Yan, H. Peter Dommel

Using a Generic Object Model to Build an RDFS Store

Bryan Thompson, Mike Personick, Bradley Bebee, Bijan Parsia, Martyn Cutcher
3D Visualization of Relation Clusters from L Ontologies

Jahangheer Shaik, Cartik Kothari, David Russomanno, Mohammed Yeasin
Beyond service discovery an iti

Oussama Kassem Zein, Yvon Kermarrec

Middleware between L. and FIPA Ontologies in the Semantic Grid Environment
Maruf Pasha, Sabih ur Rehman, Arshad Ali, H. Farooq Ahmad, Hiroki Suguri

A new Structural Similarity Measure for Ontology Alignment

Babak Bagheri Hariri, Hassan Abolhassani, Ali Khodaei

Ontology Matching and Schema Integration Using Node Ranking
Asankhaya Sharma, D.V.L.N. Somayajulu

Session: SEMANTIC WEB

Web Service Discovery in Large Distributed System Incorporating Semantic
Annotations
Guo—wen Wu, Jing—zhou Zhang, Xiao—kun Ge, Shou—jian Yu

f Semantic in Heal re Systems
Farhan Qazi
An Approach mantic Matching of rvic
Dingjian Chen, Jian Wu, Shuyu Li, Manfu Ma, Zhengguo Hu

Session: PROTOCOLS AND APPLICATIONS

Automatic Code Generation for LYE. a High—Performance Cachin AP
Implementation

Venkatesh Ranganath, Andrew King, Daniel Andresen

Event—Based SOAP Message Validation for WS- rityPolicy—Enriched Web
Services

Nils Gruschka, Norbert Luttenberger, Ralph Herkenhiner




Dyvnamic Structure Mechanism B Lightweight Relevan r rvi
irector

S.M.F.D Syed Mustapha
Framework of — for Urban Drainage ork m

Jing Yu, L. Ye, Chunting Yang

Session: WEB SERVICES
h—Enable ervices for Mobile Devi

Michael Hu, Zachary Davis, Shreyas Prasad, Michael Schuricht, Peter Michael
Melliar—Smith, Louise Moser

nt—Based rvi mposition with JADE an T
Shenghua Liu, Peep Kungas, Mihhail Matskin
A Generic Database Web Service
Erdogan Dogdu, Yanchao Wang, Swetha Desetty
Logic for Hisher—Order Workflow of Composite Web Services
Mihhail Matskin, Enn Tyugu

Web Services—based Middleware for QoS Brokering of Media Content Delivery

Services

Sofie Van Hoecke, Kristof Taveirne, Koen De Proft, Filip De Turck, Bart Dhoedt
Measuring A vailabilitv of Mobile Web Services

Kee—Leong Tan, S.M.F.D. Syed Mustapha

A Novel Personal Agent Framework for Web Services and Commercial Systems

Angie Shia
n Similarities between SOA-Based Web Service and Smart Card Application for
Ease of Understanding and Securing the Former
Jianwu Zheng, Mingsherng Liu, Hui Liu
Design of Cl r treamin rvers to Balance th rk L for VoD

Applications
S.V. Kolekar, D.M. Thakore



The 2006 World Congress in Computer Science,
Computer Engineering, and Applied Computing

Monte Carlo Resort, Las Vegas, Nevada, USA
June 2629, 2006

Conferences:

The 2006 International Conference on Bicinformatics & Computational Biology

The 2 international Conference on Computer Design & International Conference
on mputing in Nanot nolo

The 2 International Conference on Computer Graphics & Virtual Realit
The 2 International Conference on Communications in Computin

The 2 International Confer n Scientifi mputin

The 2 nternational Conference on Data Minin

The 2006 International Conference on e-Learning. e~Business, Enterprise Information
tem ~Government tsourci

The 2 International Conference on Engineering of Reconfigurable Systems
Algorithms

The 2 Int tional Conferen nk t Application
The 2 International Conference on Foundations of Computer Science

The?2 International Conference on Frontiers in Education: Computer Science
Computer Engineering

The 20086 International Conference on Grid mputin Applications
The 2 International Conferen n_Artificial Intelligen

Ih Int tion onferenc Inter in Internati {Con n
on Computer Games Development

The 2 internstiona! Conferen n Wireless Network



The 2006 International Conference on Information & Knowledge Engineering

The 2 International Conferen nim Pr in omputer Vision, & Paitern
Recognition

The 2 International Conference on Machine Learning; Models. Technologies
Applications

The 2006 International Conference on Modeling, Simulation & Visualization Methods

The ?2 International Conference on Parallel & Distributed P ing Technigu
Applications & International Conference on Real-Time Computin stems

Applications
The 2 International Conference on Pervasive Systems & Computin
The 2 international Conference on Securit Management

The ?2 Internati onferen ftware Engi rin rch & Practi
International Conference on Programming Langua and Compilers

The 2 International Conference on Semantic Web & Web Services

Editor H.R. Arabnia
University of Georgia, GA, USA
Copyright by CSREA Press
ISBN: 1-932415-99-8



R e




