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Abstract — The definition of the Gauss transform is

based on the eigenstructure of the Abel transform.

This allows to find the inverse Gauss transforms of

the classical isotropic Green’s functions in any di-

mension. This has consequences for the calculation

of certain pertinent integrals in electromagnetics in

terms of the related finite and discrete Abel trans-

forms.

1 Introduction

The Abel transform, known for its relationship with
the Radon transform [1], is a well-known tool in
computerized tomography and image processing. It
is also known for its relationship with the Bessel-
Hankel, Struve and Y-transforms [2]. It is much less
known, and most important for electromagnetic ap-
plications, that the Abel transform, when applied
to the isotropic frequency-domain Green’s functions
of dimension n, results in the isotropic frequency-
domain Green’s function of dimension n − 1. From
the fact [3] that the Abel transform admits zero-
mean Gaussian distributions with different (possi-
bly complex) variances as eigenfunctions, it is then
possible to define the Gauss transform and find the
inverse Gauss transforms of the Green’s functions
in any dimension. This has consequences for the
calculation of certain pertinent integrals in electro-
magnetics in terms of the related finite and discrete
Abel transforms.

2 Abel, Gauss and related transforms

The (infinite) Abel transform and its inverse for
functions defined over R+ are given by [1, 2]

Φ(r) = Af ≡ 2

∫ ∞

r

f(t)t√
t2 − r2

dt (1)

f(r) = A−1Φ ≡ − 1

π

∫ ∞

r

Φ′(t)√
t2 − r2

dt (2)

This can also be written as

Φ(r) = 2

∫ ∞

0

f
(

√

r2 + x2
)

dx (3)

f(r) = − 1

π

∫ ∞

0

Φ′
(√

r2 + x2
)

√
r2 + x2

dx (4)
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An interesting property of the Abel transform is
that its square is a simple integral operator, i.e.,
we have

ξ(r) = A2f = 2π

∫ ∞

r

f(t)t dt (5)

f(r) = −ξ′(r)

2πr
(6)

From (3) it is seen that the Abel transform admits
the continuous eigenspectrum of Gaussians, i.e.,

A e−γr2

=

√

π

γ
e−γr2 ℜ γ > 0 (7)

Most important for electromagnetic applications,
the Abel transform applied to the isotropic
frequency-domain Green’s functions (eiωt time de-
pendence assumed)

g1(r; k) =
i

2k
e−ikr, g2(r; k) =

i

4
H

(2)
0 (kr),

g3(r; k) = − 1

4πr
e−ikr (8)

where ℑk < 0, say k = −iǫ + ω/c (ǫ > 0), is such
that Agn = gn−1. The link with the cosine, sine,
Bessel-Hankel and Struve transforms [4] p. 74 is
given by :

CΦ ≡
∫ ∞

0

cos(ρr)Φ(ρ) dρ

= π

∫ ∞

0

J0(ρr)f(ρ)ρ dρ ≡ πBf (9)

SΦ ≡
∫ ∞

0

sin(ρr)Φ(ρ) dρ

= π

∫ ∞

0

H0(ρr)f(ρ)ρ dρ ≡ πHf (10)

where H0(·) is the Struve function. Note that (9)-
(10) can be formally written as CA = πB and
SA = πH. The inverse of the Bessel-Hankel trans-
form is itself, while the inverse of the Struve or
H−transform is the Y −transform

Yf ≡
∫ ∞

0

Y0(ρr)f(ρ)ρ dρ (11)

where Y0(·) is the Bessel-Neumann function.
There is an important relationship with the Gauss
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transform, which we define for fixed α, ℜα > 0 as

f(r) = Gαh ≡
∫ ∞

0

e−παr2/ρ2

h(ρ) dρ (12)

and the related transform

f̂(r) = Ĝαh ≡
∫ ∞

0

e−r2ρ2/4πα h(ρ) dρ (13)

Note that Ĝα can be obtained from Gα by means of

Ĝαh = G1/αĥ (14)

where ĥ is the L1[R+] isometry

ĥ(ρ) = T1h ≡ h

(

2π

ρ

)

2π

ρ2
(15)

To obtain the inverse Gauss transform we take the
Gauss transform of f(r), yielding

Gαf =
1

2

∫ ∞

0

e−2παr/ρ ρ√
α

h(ρ) dρ

=
1

2

∫ ∞

0

e−αrt T1

[

t√
α

h(t)

]

dt (16)

which, by putting s = αr, allows to retrieve
T1[th(t)/

√
α] and hence h(t) by means of the inverse

Laplace transform. With respect to the derivatives
of f(r) there are two important formulas that can
be proved straightforwardly, namely

f ′(r)

r
= −2παGα

[

h(ρ)

ρ2

]

(17)

f ′′(r) = −2παGα

[

h′(ρ)

ρ

]

(18)

It is not too hard to show that the Abel, Bessel-
Hankel and cosine transforms can be written in the
Gauss domain as

Af = Gα

[

ρ√
α

h(ρ)

]

(19)

Bf =
1

2π
Ĝα

[

ρ2

α
h(ρ)

]

(20)

Cf =
1

2
Ĝα

[

ρ√
α

h(ρ)

]

(21)

Again, from (19)-(21), we see that CA = πB.
The most interesting property of the Gauss trans-
form, besides (19), is that it transforms (zero-mean)
Gaussians into exponentials, i.e.,

Gα

[

e−γρ2/4π
]

=
π√
γ

e−
√

αγr ℜγ > 0 (22)

From (19) and (22) we readily obtain that the
isotropic Green’s functions gn(r; k) admit simple
representations in the Gauss domain, i.e.,

gn(r; k) = −Gα

[

e−βρ2/4π

2π
√

α(ρ/
√

α)n−1

]

(23)

where ik =
√

αβ and ℜβ > 0. For example we can
take α = ik/|k| and β = ik|k|. Note that result
(23) is compatible with (17)-(18) since the defining
second-order differential equation for gn(r; k), i.e.,

f ′′(r) + (n − 1)
f ′(r)

r
+ k2f(r) = 0 (24)

for r > 0, is equivalent in the Gauss domain with
the first-order differential equation

−2πα

[

h′(ρ)

ρ
+ (n − 1)

h(ρ)

ρ2

]

+ k2h(ρ) = 0 (25)

which exhibits the general solution

h(ρ) = C e−βρ2/4π/ρn−1 (26)

3 Calculating the finite Abel transform

The finite Abel transform, defined as

Ψ(r, z) = Az f ≡ 2

∫ z

0

f
(

√

r2 + x2
)

dx (27)

with Ψ(r,∞) = Φ(r) and z > 0, while being simply
inverted by means of dΨ(r, z)/dz = 2f(

√
r2 + z2),

is not in general easily calculated. It can however
be written as

Ψ(r, z) = Φ(r)

+
2

π

∫ ∞

z

dx

∫ ∞

0

Φ′
(√

r2 + x2 + u2
)

√
r2 + x2 + u2

du (28)

which, after taking polar coordinates x = p cos θ,
u = p sin θ, transforms to

Ψ(r, z) = Φ(r) − 2

π

∫ π/2

0

Φ
(

√

r2 + z2/ cos2 θ
)

dθ

(29)
We can also write down the finite Abel transform
in the Gauss domain as

Ψ(r, z) = Gα

[

ρ√
α

erf

(√
απz

ρ

)

h(ρ)

]

(30)

Note that (29) and (30) are equivalent representa-
tions, since it is known that

2

π

∫ π/2

0

e−παz2/ρ2 cos2 θdθ = 1−erf

(√
απz

ρ

)

(31)



This implies that

Az gn(r; k) = gn−1(r; k) −
2

π

∫ π/2

0

gn−1

(

√

r2 + z2/ cos2 θ; k
)

dθ (32)

or equivalently

Az gn(r; k) = −Gα

[

e−βρ2/4π

2π
√

α(ρ/
√

α)n−2
erf

(√
απz

ρ

)

]

(33)
For example, in the case n = 2, equation (32) trans-
lates to

∫ z

0

H
(2)
0

(

k
√

r2 + x2
)

dx =
1

k

[

e−ikr −

2

π

∫ π/2

0

e−ik
√

r2 + z2/ cos2 θdθ

]

(34)

One could argue that equation (34) means we have
traded one integral for another, but this is not
quite the case, since the left-hand integral requires

function calls to the ’complicated’ function H
(2)
0 (·),

while the right-hand integral requires only function
calls to the ’simple’ exponential function. If we
take k = 1− i, r = 1 and z = 100, the integral (34),
calculated with the MATHEMATICA 5.1 R© func-
tion NIntegrate, is evaluated for both integrals (as
it should be) as 0.254163−0.0553969i, but the left-
hand integral requires 0.841 CPU seconds while the
right-hand integral requires only 0.01 CPU seconds
to complete. If, with the same k and r values we
evaluate the integrals for z = 1, 2, · · · , 100 we need
61.569 total CPU seconds for the left-hand integrals
and only 0.621 total CPU seconds for the right-
hand integrals, which is about a hundred times
faster. The computations were performed on a x86
PC running Windows NT 4.0.

4 Calculating the discrete Abel transform

Since Φ(r) can be written as

Φ(r) = A f =

∫ ∞

−∞
f

(

√

r2 + (z − t)2
)

dt (35)

for z ∈ R, it is plausible that a discrete evaluation,
in the Riemann sense, of the integral (35) could pro-
vide some pertinent approximation to Φ(r). This is
embodied in the discrete Abel transform, which is
also of importance in the study of periodic Green’s
functions, and is defined as

Ξ∆(r, z) = Az,∆ f ≡ ∆
∑

n∈Z

f
(

√

r2 + (z − n∆)2
)

(36)

where for ∆ = 0 we take Ξ0(r, z) = Φ(r). It is seen
that Ξ∆(r, z) is periodic in z with period ∆. In the
Gauss domain, Ξ∆(r, z) can be written as

Ξ∆(r, z) = Gα

[

ρ√
α

θ3

(πz

∆
, e−πρ2/α∆2

)

h(ρ)

]

(37)
This follows from the Poisson summation formula,
see e.g. [5] p. 485

1√
πt

∑

m∈Z

e−(m−x)2/t = θ3

(

πx, e−tπ2
)

t > 0

(38)
where θ3(·) is the elliptic theta function defined as

θ3(u, q) = 1 + 2

∞
∑

m=1

cos(2mu) qm2

(39)

Regarding the discrete Abel transform of the
isotropic Green’s functions, it is not too hard to
show from formulas (23) and (38)-(39) that we have

Az,∆ gn(r; k) = gn−1(r; k) +

2

∞
∑

m=1

gn−1(r; km) cos(2mπz/∆) (40)

where
ikm =

√

αβ + (2πm/∆)2 (41)

For example, in the case n = 2, equation (40) trans-
lates to

∆
∑

n∈Z

H
(2)
0

(

k
√

r2 + (z − n∆)2
)

=

2e−ikr

k
+ 4

∞
∑

m=1

e−ikmr

km
cos(2mπz/∆) (42)

References

[1] C.M. Vest,“Formation of images from projec-
tions : Radon and Abel transforms,” J. Opt.
Soc. Am., vol. 64, no. 9, pp. 1215-1218, Sep.
1974.

[2] I.N. Sneddon, “The Use of Integral Trans-
forms,” McGraw-Hill, 1972.

[3] V. Dribinski, A. Ossadtchi, V.A. Mandelsh-
tam and H. Reisler, “Reconstruction of Abel-
transformable images : The Gaussian basis-set
expansion Abel transform method,” Rev. Sci.
Instrum., vol. 73, no. 7, pp. 2634-2642, July
2002.
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