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AB STRACT

In Positron Emission Tomography (PET) images have to be reconstructed from noisy projection data. The
noise on the PET data can be modeled by a Poisson distribution. The development of statistical (iterative)
reconstruction techniques addresses the problem of noise.

In this paper we present the results of introducing the simulated annealing technique as a statistical recon-
struction algorithm for PET. We have succesfully implemented a reconstruction algorithm based upon simulated
annealing, with paying particular attention to the fine-tuning of various parameters (cooling schedule, granular-
ity, stopping rule, . . .). In addition, we have developped a cost function more appropriate to the noise statistics
( e. g. Poisson) and the reconstruction method (e. g. ML). The comparison with other reconstruction methods using
computer phantom studies proves the potential power of the simulated annealing technique for the reconstruction
of PET-images.

1 INTRODUCTION

Positron Emission Tomography is a tomographic method to display metabolic activity in a slice through a
patient's body. The particular construction of the PET scanner and the use of a radioactive tracer entail the
modeling of the data by a Poisson distribution.

The reconstruction method most commonly used today in PET is the Filtered Backprojection (FB) algorithm.'
This reconstruction technique is based on a Fourier Transform algorithm and is extremely fast. However, since
FB is a deterministic algorithm and hence does not account for statistical fluctuations in the measurements, the
obtained reconstructed images can suffer from very annoying stripe-like artifacts.
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To address the problem of noise, the study of statistical (iterative) reconstruction techniques has received
much attention in the past few years. One of the most popular methods is the Maximum Likelihood Expecta-
tion Maximization (ML-EM) algorithm,2'3 which searches the image that maximizes the likelihood of the data.
However, when the algorithm is iterated too long, the reconstructed image starts to degrade.4

Maximization algorithms (e. g. conjugate gradient, EM) achieve convergence by monotonically increasing some
metric (e. g. a likelihood) at every iteration. Simulated annealing is a Monte Carlo technique which allows oc-
casional negative increments of the cost function so that it can avoid getting trapped in local minima. The
technique has been proposed earlier by Kearfott et. al. and Webb6 for SPECT, but it has never been applied to
PET before.

2 SIMULATED ANNEALING

Simulated annealing was introduced by Metropolis et. al. ' and is used to approximate the solution of very
large combinatorial optimization problems8 (e. g. NP-hard problems). The technique originates from the theory
of statistical mechanics and is based upon the analogy between the annealing of solids and solving optimization
problems.

Let us assume we are looking for the configuration that minimizes a certain cost function E. The algorithm can
then be formulated as follows.9 Starting off at an initial configuration, a sequence of iterations is generated. Each
iteration consists of the random selection of a configuration from the neighbourhood of the current configuration
and the calculation of the corresponding change in cost function zE. The neighbourhood is defined by the choice
of a generation mechanism, i. e. a "prescription" to generate a transition from one configuration into another by
a small perturbation. If the change in cost function is negative, the transition is unconditionally accepted; if the
cost function increases the transition is accepted with a probability based upon the Boltzmann distribution

Pacc(E&E)

where k is a constant and the temperature T is a control parameter. This temperature is gradually lowered
throughout the algorithm from a sufficiently high starting value (i. e. a temperature where almost every proposed
transition, both positive and negative, is accepted) to a "freezing" temperature, where no further changes occur.
In practise, the temperature is decreased in stages, and at each stage the temperature is kept constant until
thermal quasi-equilibrium is reached. The whole of parameters determining the temperature decrement (initial
temperature, stop criterion, temperature decrement between successive stages, number of transitions for each
temperature value) is called the cooling schedule.

Consequently the four key "ingredients" for the implementation of simulated annealing are:

• the definition of configurations;

• a generation mechanism, i. e. the definition of a neighbourhood on the configuration space;

• the choice of a cost-function;

• a cooling schedule.

We will now discuss the particularities of the annealing algorithm in the case of reconstruction of PET images.
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Figure 1 : Reconstruction scheme for simulated annealing.

3 A RECONSTRUCTION ALGORITHM BASED ON
SIMULATED ANNEALING

3.1 Principle

The simulated annealing reconstruction algorithm for PET can be formulated as follows. We will iteratively
reconstruct an image that fits best the measured data pm To do so, we will calculate at each iteration step the
pseudo data P that correspond to the present state of the reconstructed image. We assume that, by minimizing
the difference between the measured data and the pseudo data, the reconstructed image will converge towards
the sought-after original image. Therefore we choose as cost function a function that expresses the difference
between both data sets. This reconstruction scheme is shown in Fig. 1.

At each iteration step, the intensities of one or a few pixels are altered. We calculate the corresponding change
in cost function E, and decide upon this difference in cost function whether the proposed transition is accepted.
The "crystallization" of the reconstructed image throughout the algorithm can be seen in Fig. 2; the evolution of
the cost function is shown in Fig. 3. Since we use software phantoms, we can also display the error function of
the reconstructed image, which is the least squares distance between the original and the reconstructed image.

3.2 Configurations

We have performed studies on software generated phantom images. The pixel intensities are integer values
ranging between 0 and 10000. To reduce reconstruction times, we have experimented with relatively small
64 x 64 images, since there is no reason why the obtained results should not be valid for larger dimensions.
We have furthermore restricted our experiments to the reconstruction of noisefree data. To be able to evaluate
different properties of the reconstructed images (such as contrast, smoothness) we have used a number of different
phantoms.
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Figure 2: Reconstructed image after (A) 500.000, (B) 1 million, (C) 1.5 million, (D) 2 million, (E) 3 million and
(F) 5 million iterations.
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Figure 3: Evolution of the cost function and the error function of the reconstructed image.
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Figure 4: Evolution of the cost function for different pixel updating methods; the GTM reconstruction started
from an initial image with correct total intensity.

3.3 Generation mechanism

As explained above, the generation mechanism controls the transition from one image to a neighbouring one.
This is achieved by adjusting the intensities of one or more randomly chosen pixels at each iteration step. We
therefore have to decide on the number of pixels to be changed simultaneously, the choice of pixels and the amount
of intensity to be changed (i. e. the grainsize).

Pixel updating We considered two possible approaches to the first problem, based upon Frieden et. al. "There
is the Grain Allocation Method (GAM), which allocates a grain of intensity to one pixel, and there is the Grain
Transfer Method (GTM), which transfers a grain from one pixel to another. Since GTM conserves the total image
intensity (which is initially unknown), we constructed a third method which uses both GAM and GTM at the
same time. Our experiments showed that GAM performs marginally better than the other two methods, as can
be seen in Fig. 4.

Pixel choice PET measurements have to be corrected for attenuation in the scanned object. This attenuation
correction is usually derived from an extra transmission scan. Huang et. al. 12 describe a technique to replace the
extra transmission scan by a calculated attenuation correction, based upon the contour of the scanned object.
Since each zero-element in the measured data implies a strip of empty pixels in the image at the corresponding
angle, the contour can easily be found.

We have used this technique to exclude whole regions of the image from the generation mechanism, thus
improving the efficiency of each iteration step. The resulting evolution of the cost function is displayed in Fig. 5.
As can be expected, this technique only improves the efficiency of the generation mechanism, but not the quality
of the reconstructed image.
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Figure 5: Evolution of the cost function with and without preliminary contour detection.

Grainsize It is clear that the algorithm must allow both positive and negative grainsizes, but must forbid
negative image intensities. Most authors suggest choosing grainsizes from a uniform distribution in the interval
{—i9, +13]. As can be seen in Fig. 6, our experiments show that better results can be obtained by not keeping
the boundary parameter /3 constant, but letting the algorithm itself decide upon the value for /3 throughout
the process. This can be achieved by keeping track of the mean accepted grainsize, and choosing the boundary
parameter accordingly.

3.4 Cost function

We first performed experiments using the classical cost function

E=(P7_1)2, Vi,j=1,...,64,

which is the mean squared distance between P and P. This approach is suggested by most authors5'6 and
produces good results for a number of different testphantoms. The reconstructed images show that simulated
annealing, in comparison to other reconstruction algorithms, is very good at reconstructing edges between image-
areas with a constant intensity, but has more difficulties in reconstructing these constant areas themselves. This
problem can be addressed by adding an appropriate smoothness factor to the cost function.1°

We later derived a new cost function, based upon the maximum likelihood principle. Maximization of the
likelihood P(IIm), with I the reconstructed image, implies maximization of fl2, P(P2711). Taking into account
the Poisson-character of the detection process, we find that

'pP '
P(PII)=e''

SPIE Vol. 2434 / 383

2 3 4 5
number of iterations (million)



1 e+14

le+13

le+12

le+11

le+1O

le+09

1 e+08

1 e+07

le+06

le+05
10

Figure 6: Evolution of the cost function for different grainsize settings.

After taking the logarithm of the likelihood and omitting the constant term, the cost function reduces to

E=(7lnF1—PJ) Vi,j=1,...,64.

This new cost function achieves reconstructed images of the same quality as the classical cost function, but clearly
shows faster convergence in the early stages of the reconstruction. Since this new cost function is based upon the
statistical character of the detection process, we expect it to outperform the classical cost function when applied
to noisy data.

3.5 Cooling schedule

Starting temperature The initial temperature should be chosen so that about 80% of all positive transitions
(i. e. transitions which increase the cost function) are accepted.9 This temperature is strongly dependent on
the measured data and the initial image. Most authors suggest a trial and error method for determining this
starting temperature. This can be done for example by running the algorithm shortly for one temperature value,
calculating the corresponding acceptance rate and adjusting the temperature value accordingly until a rate of
about 80% is achieved.

We have developed a criterion which calculates the starting temperature from only one trial run. This trial
run results in a series of N positive transitions zE1. We are looking for a value for kT for which

N

> exp(—) = 0.8.

After neglecting the higher order terms of the Taylor-expansion of the exponential, we find that

kT = 5(ZEi)mean.
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Experiments show that this value leads to acceptance rates of about 82%, which means that this method is a
very good estimator for the starting temperature.

Temperature decrement between successive stages The temperature is decreased by multiplication with
a factor a . There is actually a trade-off between temperature decrement between stages and the number of
iterations per stage. For example when the temperature is kept constant long enough for the equilibrium to be
reached, greater decrements are allowed. Best values for a are between 0,8 and O,98.

Number of iterations per stage Frequently used criteria are a constant number of iterations, or iterating until
a constant number of transitions is accepted. Experiments show that better results are achieved by considering the
physical background of simulated annealing and the concept of thermal quasi-equilibrium. This means keeping the
temperature constant until the cost function has reached a constant value (or is oscillating around this constant
value).

Stop criterion Since the emphasis of our research was on the quality of the reconstructed images, we have
not devoted much attention to the development of a workable stop criterion. It is clear however that when the
equilibrium values of the cost function for successive stages are constant themselves, the iteration process can be
stopped.

4 RESULTS AND CONCLUSION

We have found the simulated annealing algorithm to reconstruct images of good quality for noiseless data.
As already mentioned, it is notable that the reconstructed images show a high contrast in comparison to other
reconstruction techniques (Fig. 7) . These results certainly justify the continuation of our research for the recon-
struction of noisy images. The main problem with simulated annealing is the large reconstruction time. Since
it has been proven that simulated annealing is extremely suited for parallellization,'3 we will try to reduce the
reconstruction time by parallellizing the algorithm.
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Figure 7: Comparison between (A) the original image and the reconstructed images with (B) simulated annealing
and (C) maximum likelihood.


