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Abstract. Recent advances in FDTD simulations of simple dielectrics have opened the possibility
of various forms of local refinement [1]. These possibilities are based on writing FDTD as a special
case of a finite element technique. We have shown [3] that these techniques can be extended to
Body-Of-Revolution (BOR) FDTD which is well-suited for modelling toroidal cavities. Further
extending this technique to the time-domain modelling of plasmas presents difficulties: The classical
“Whitney” basis-functions (and their analogues in toroidal geometries) are insufficiently smooth to
be used as “testing” functions the time-domain constitutive equations of cold plasma [2]. In this
paper, we present a set of basis-functions that can be used to write time-domain cold plasma as a
mass lumped finite element scheme.
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INTRODUCTION

The lossless equations describing cold plasma in time domain are [2]
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We now integrate over a discrete time interval t−∆t/2 . . . t +∆t/2 to obtain:
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Using eq. 1c and the usual FDTD assumption that the electric field is well approximated
by a linear function over a discrete time interval ∆t , we can calculate
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The discretized solution can be expressed using the 3×3 matrices [Ai] and [Bi] as∫ t+∆t/2
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Explicit expressions for [Ai] and [Bi] can be readily derived but not not be given here.
This approach is similar to the implicit approach of [2].

TESTING THE TIME-DOMAIN COLD PLASMA EQUATIONS

The above time-stepping equations are still continuous in space. They can discretized by
writing all electric, magnetic and current components as linear combinations of suitably
selected localized basis functions ~Ei, ~Bi and ~Ji:

~E = ∑
i

ei~Ei ~B = ∑
i

bi~Bi ~Js = ∑
i

js,i~Ji (5)

Following [1], we use basis functions with the curl inclusion property, i.e. curls
of electric field basis functions are exact linear combinations of magnetic field basis
functions. This enables us to satisfy Faraday’s law (1a) in the strong sense. The time-
stepping equations for the electric field (1b) and the current (1c) are satisfied weakly
by testing both sides of these equations with the electric field basis functions. Just as in
simple dielectrics, the term involving ~∇×~B is problematic because the magnetic basis
functions are themselves not curl-conforming. When weighing (4) one typically has to
calculate the following integral:
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This integral is still well-defined provided f is curl-conforming. In simple dielectrics,
the (ε0 +∑s[A3])

−1 factor reduces to a scalar and it hence suffices that the electric
basis function ~Ei is curl-conforming. However, in plasma’s this does no longer suffice
and the classical “Whitney” or “Lobatto” basis functions proposed in [1] or their BOR
counterparts presented in [3] are not suitable for cold plasma. A suitable extension of
these BOR basis functions is given below.

HIGHER ORDER BASIS FUNCTIONS

Until now we have not given any details on the selection of the proper basis functions
except that they must satisfy the curl inclusion property. For e.g. the study of Toka-
maks it is convenient to use the BOR FDTD formulation, which decomposes toroidal
geometries into toroidal modes. This results in an essentially 2D scheme where the sim-
ulation is performed in a poloidal cross section, In that case the time-stepping equations
themselves depend on the toroidal mode number. In general, nth-order basis functions
obeying the curl inclusion property in cylindrical coordinates can be constructed as fol-
lows: Let Fn(r) be a set of functions given by a+∑

n−1
0

cn ln(r)n

r and Pn(z) be the set
of (n−1)th-order polynomials (i.e. polynomials with n coefficients). Let S = sin(Mθ),
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FIGURE 1. Left: Anchor points for the basis-functions on a cell. Right: Block-diagonal structure for
~Ez and ~Er

C = cos(Mθ). Elementary electric basis functions are then defined as follows:

Eθ ∈ Fn(r)Pn(z)S Er ∈ Fn−1(r)Pn(z)C Ez ∈
∫

Fn−1(r)drPn−1(z)C

The corresponding elementary magnetic basis functions become

Br ∈ Fn(r)Pn−1(z)S Bθ ∈ Fn−1(r)Pn−1(z)C Bz ∈ Fn−1(r)/rPn(z)S

To discretize space we now introduce elementary cells as depicted in Fig. 1. Each cell
extends between r0 and r0 +∆ and z0 and z0 +∆, and in fact represents an elementary
torus as this cell extends over 0≤ θ ≤ 2π . For each cell, the dots (top figure, represent-
ing θ -components) or arrows (representing radial or z-components) are the so-called
anchor points. The actual basis functions that are used to discretize space are defined
as linear combinations of the above elementary basis functions in such a way that each
contributing elementary basis function is 1 at its anchor point and 0 at all other anchor
points. E.g. for ~Eθ this implies that 9 elementary basis functions are combined to get
obtain an overall basis function in one particular cell. The functions that are thus defined
are natural generalisations of the BOR-FDTD basis-functions introduced in [3] and re-
duce to those functions when n = 1. The cell structure (fig. 1) differs from the traditional
Yee-like BOR FDTD cell because of the higher smoothness of the basis functions. It is
more similar to a second-order “Lobatto” cell [1], but 4 of the 6 ~Er and ~Ez functions have
been moved to the cell corners. The current basis functions are built form the elementary
basis functions for the electric field but they have different anchor points (see Fig. 1).

MASS LUMPING

(BOR) FDTD in simple dielectric media can be derived from finite-element principles
by approximating testing integrals such as (6) by trapezoidal integration [1, 3]. This so-
called mass lumping allows to express the effect of place dependent permittivity and



permeability by means of diagonal matrices which are easily invertible (specifically,
[?ε ]i, j =

∫
~Ei · ~E jdV must be inverted). For higher-order cells used here this aproach

results in band-diagonal matrices. Low-bandwidth band-diagonal n× n matrices can
be inverted in O(n) time using Cholesky decomposition. This is not explicit but still
has the same asymptotic time-complexity as classical FDTD. A detailed analysis shows
that the band-diagonal matrices here have an additional block-diagonal structure: there
are O(

√
n) band-diagonal blocks whose bandwidth is independent of n (see fig. 1 :

the mass-lumping neglects off-diagonal elements between ~R-basis-functions in the z-
direction and between~z-basis-functions in the R-direction, leading to blocks whose size
is proportional to the width or height of the simulation region, i.e. O(

√
n) ).

NUMERICAL EXAMPLE

FIGURE 2. Propagation onto a plasma wave beach.

Following [2], we consider a wave incident on a plasma whose density increases as
x5. The plasma encounters a cutoff condition and is reflected (fig. 2).

CONCLUSION

An attempt was made to write time-domain cold plasma as a mass lumped finite element
method. Unfortunately, we are unable to guarantee the stability of this approach in the
magnetized case, and an alternative approach where discretisation in space is performed
before discretisation in time seems more promising.
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