
Development Framework for Web Service

Choreographies in Pervasive Environments

Gregory Van Seghbroeck

Supervisors: Bart Dhoedt, Filip De Turck

I. INTRODUCTION

Nowadays mobile devices like PDAs and

smart phones are not only becoming

extremely popular, mainly due to their

decreased price tag, but they are also

becoming more intelligent. These mobile

devices are a valuable asset to incorporate in

large scale applications, e.g. making bank

payments via SMS. However, it does not have

to stop with mobile devices and server

applications. When we add sensor networks,

network-aware home appliances, etc to the

mix, you cannot imagine anything that cannot

be created for these pervasive, heterogeneous

environments. The sky is the limit!

One of the many types of service oriented

architectures (SOA) that can be used to create

these pervasive applications are service

choreographies. Designing choreographies,

not to mention executing one, is not a

sinecure. That is why we present the

necessary building blocks for a development

framework to facilitate creating such

choreographies and in particular web service

choreographies. The development framework

includes all the different stages of the

development cycle: from design over

validation to deployment. It will mask the

complexities of the validation and the

projection steps, taking into account that the

service choreography will include besides

servers, sensors and similar limited devices.

This can potentially pose problems during

deployment, since these devices very often

have few computation power and small

embedded memory, so the used algorithms

have to be fast with a small memory footprint.

Figure 1 depicts the flow and the different

building blocks of the development

framework. It is roughly divided into two

phases, an implementation and a deployment

phase. Throughout the flow different models

are used tot represent the data and where it is

possible we use real standards. Most of the

steps of the framework can be automated;

others still require some user interaction.

II. THE IMPLEMENTATION PHASE

The implementation phase first of all starts

with the design of the global choreography.

We use W3C’s WS-CDL specification to

describe the choreography. In [1], the authors

Figure 1 Development framework flow

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55776653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proved the relation between WS-CDL and the

-calculus, a well known process algebra used

to model mobile distributed systems. The fact

that WS-CDL has important similarities with

the -calculus, helps us with designing

interesting validation mechanisms. E.g. the

channel instantiation validation, described in

[2], makes use of WS-CDL’s notion of

channels. The other validations that need to

be performed on the choreography description

are correlatability (described in [3]) and well-

orderedness. All these validations make sure

that the described choreography can

unambiguously be executed. Via the End-

point Projection technique presented in [1] we

translate the channel instances, created during

the instantiation validation, to an intermediate

model, the piX-model. This model, first

presented in [4], models the behavioural

aspects of the channel instances. In the

following step the different piX-models are

translated to abstract WS-BPEL stubs. These

rather difficult steps of the implementation

phase can be fully automated.

We now have a bunch of abstract

WS-BPEL stubs that represent the

behavioural aspects of the choreography, but

these stubs need to be implemented further to

meet the specific needs of the domain and the

device. This part of the implementation phase

is entirely up to the developer of that specific

device. We use WS-BPEL in our

development framework, but this can be any

programming language capable of running

small workflows (even JAVA or C). The only

thing we need to do additionally is define a

mapping between the piX-model and the

chosen language and vice versa.

When the implementation is finished, the

Static Conformance Verification (SCV)

method can be used to verify whether the

implementation still is conformant to the

choreography description. This validation is

thoroughly described in [4]. It uses the piX-

model and Saturated State Graphs (SSG) as

input. An SSG is a labelled graph using the

behavioural activities as labels and can be

derived from the piX-model. While deploying

the implementation to its respective device,

we will send, instead of the entire WS-CDL

description, all the other choreography

partners’ SSGs to the device as well. There is

no problem in doing so, because all these state

graphs combined, exactly represent the

behaviour of the choreography.

III. THE DEPLOYMENT PHASE

When we deploy the implementation to its

device, we will also verify the conformance

of the other choreography partners to be sure

that they behave as described in the WS-CDL.

Each partner’s implementation will be

retrieved over the network. These

implementations are then translated to the

piX-model and used together with the

deployed state graphs as input for the SCV.

Since the algorithm now is running on the

device itself, we will benefit from the efforts

taken to reduce its complexity:

 piX-models will be as small as

possible, due to the channel

instantiation [2];

 SSGs are already created during the

implementation phase and deployed

together with the implementation;

 By using the piX-model the SCV is

drastically reduced in complexity [4].

ACKNOWLEDGEMENT

Gregory Van Seghbroeck acknowledges the

IWT for a PhD research grant.

REFERENCES

[1] M. Carbone, et all, “A Theoretical Basis of

Communication-Centered Concurrent

Programming”, 2006.

[2] G. Van Seghbroeck, et all, “Automated

instantiation and extraction of web service

choreographies”, ICIW, May 2009
[3] G. Van Seghbroeck, et all, “Message

Correlation in Web Services Choreographies:

a 4-phase Validation Method”, ECOWS,
accepted, November 2009.

[4] G. Van Seghbroeck, et all, “Web service

choreography conformance verification in
M2M systems through the piX-model”,

SIPE, July 2007.

