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Abstract—An optimal common-mode suppression filter for a
bend discontinuity in a pair of differential lines is characterized
simultaneously by a large reduction of conversion noise, a small
differential mode reflection coefficient and low overall loss, taking
into account technology constraints. To find the geometrical
parameters of such optimal design, a novel constrained multi-
objective optimization method, relying on intermediate surrogate
models of several costs, is proposed. A 3D Pareto-front is gen-
erated and further, constrained to impose hardware limitations.
The front shows trade-offs between the different cost functions,
as such allowing to choose an optimal solution from a large set
of available layouts. As is often the case, the filter design occurs
in the frequency domain. Additionally, in this contribution the
method is also validated by means of a time domain analysis,
confirming its accuracy and efficiency.

I. INTRODUCTION

Modern high-speed digital circuits often use coupled mi-
crostrip lines to transmit differential signals across boards, as
this way of signaling is characterized by high electromag-
netic (EM) immunity against conducted and radiated noise,
low EM interference and crosstalk. To avoid severe signal
integrity degradation [1] and high noise levels at the receiving
end, threatening the safety of the receiver, a low level of
differential-to-common mode conversion is required. Unfor-
tunately, mode conversion noise is induced easily at every
discontinuity, and in particular at a bend [2].

One of many possible filter designs that can be applied
in the area of the bend to minimize mode conversion is
the new structure described in [2], [3], where a very good
suppression of common-mode noise was achieved, although
less attention was devoted to minimize reflection and losses at
the same time. Therefore, in this paper we apply a new multi-
objective optimization [4] method to account for these conflict-
ing requirements. To speed up the optimization process, which
usually relies on a large number of time-consuming full-wave
simulations, we propose a novel approach by constructing and
exploiting multiple surrogate models in a three-step strategy.
First, surrogate models are simultaneously constructed for six

cost functions. Thereto, only one limited set of full-wave
simulations is needed. Second, a 3D Pareto-front is created by
means of multi-objective optimization relying on the generated
surrogates. Third, the Pareto-front is reduced to an acceptable
region satisfying hardware constraints, leveraging again the
surrogate models. Once constructed, this constrained Pareto-
front allows a designer to quickly decide which design from
the set of available layouts best fits the actual system require-
ments within the set of constraints imposed by the hardware
and the manufacturing process.

It is a common practice for engineers to design filters in
the frequency domain, e.g. by optimization of the pertinent
frequency-dependent scattering parameters. Therefore, in [5],
we based our optimization method of the common-mode
suppression filter on the frequency-dependent modal scattering
parameters. However, for the particular case of signaling
across a pair of differential lines, time domain behavior of
the interconnect is equally important. In this contribution we
show that our proposed optimization technique also leads
to excellent, reliable time domain results. This validation
was performed by analyzing the common mode noise at
the receiving end, differential mode noise reflected towards
the transmitter and time domain transmissometry (TDT) eye
diagrams.

In the next section we describe the filter, which is the subject
of our optimization, together with its conflicting require-
ments, whereas Section III outlines the surrogate modeling
based multi-objective optimization strategy. In Section IV,
the procedure is further detailed and applied to the common
mode suppression filter. Time domain results of three carefully
chosen samples are given in Section V, to prove the accuracy
and efficiency of the proposed method. The last section
summarizes our work.

II. COMMON-MODE SUPPRESSION FILTER

In a pair of coupled lines differential-to-common mode
conversion does not occur as long as the structure remains

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55776409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


symmetrical. However, in real printed circuit boards appli-
cations, it is impossible to avoid discontinuities such as
bends. In a classic 90◦ bend, consisting of a pair of coupled
microstrip lines with a cross-section as in Fig. 1(a), designed
on a Rogers RO4350B substrate (εr = 3.66, tan δ = 0.003,
h = 1.524 mm, t = 35µm, and σ = 4.1 · 107 S/m, which is
the value for the gold used to plate the copper microstrip lines
on the board), the outer line is much longer than the inner one
(Fig. 1(b)), causing time delay between the propagating differ-
ential signals. This introduced time skew is the main reason for
differential-to-common mode conversion and unwanted noise.
The structure is designed to have a characteristic impedance of
50 Ω for the odd mode. The characteristic impedance for the
even mode is still too small (87.47 Ω) to provide a difference
between the impedances that is large enough to sufficiently
prevent the differential mode from converting to the common
mode.

To alleviate this problem, we proposed to locally modify
the coupled microstrip lines to tightly coupled ones in the area
of the bend using tapering sections (Fig. 1(c)). The relevant
geometrical parameters of this design are: cross-section of the
classic coupled microstrip lines (line width w1 and spacing
s1), cross-section of the tightly coupled microstrip lines (w2

and s2), lengths l1 and l2 of the classic coupled microstrip
lines and the tightly coupled section, respectively, and the
length lt of the tapers. The total length of the structure is
fixed to L = l1 + lt + l2. This solution decreases the length
difference between the two traces, significantly reducing the
time delay between propagating signals, which leads to the
reduction of the differential-to-common mode conversion.
Moreover, the higher coupling factor between the lines and
higher even mode impedance in the area of the bend, while
the odd mode impedance remains matched to 50 Ω, makes
the structure act as a natural common-mode suppression filter.
The applicability of the proposed structure to common mode
filtering is verified in [2] and [3], where the main focus was
on the mode conversion and differential mode transmission
and reflection. However, other characteristics such as overall
losses, manufacturing tolerance, compact size, etc. are also
important. Since some of these objectives are conflicting, a
perfect geometry providing overall optimal performance does
not exist. A longer section of tightly coupled lines (larger l2)
prevents direct coupling between the tapers but it increases
the overall losses. More tightly coupled lines in the area of
the bend (smaller w2 and s2) help to reduce mode conversion
but again increase total loss and reflection. Moreover, they
make the structure more sensitive to production tolerances.
Since the ideal solution cannot be found, we need to select
the most important objectives and perform a multi-objective
optimization to find the set of optimal structures.

III. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization methods that rely on evolution-
ary algorithms need a lot of samples to operate, which may
be prohibitively expensive in the case of complex CPU-time
intensive simulation codes. Relying on surrogate modeling is a

w s w

t

h εr, tan δ

σ

(a) Cross-section

w1

s1

(b) Top view of classic 90◦ bend

(c) Top view of common-mode suppression filter

Fig. 1. Classic bend and common-mode suppression filter with their
geometrical parameters.

common technique to reduce the total simulation time, as this
reduces the number of required full-wave models. The idea
of using surrogates for the objectives in order to expedite the
optimization process is used in global surrogate modeling [6]
and Multi-Objective Surrogate-Based Optimization (MOSBO)
[7], [8]. A surrogate is a cheap approximation of a complex
simulation model that can be used to replace that simulation
model, allowing to quickly obtain any number of additional
function evaluations without resorting to more expensive nu-
merical models. In the optimization process, the surrogate
models are used to create a globally accurate approximation
of each cost function so that the multi-objective optimization
algorithm is applied using the surrogates instead of the expen-
sive simulation code. The initial extra cost in constructing the
surrogate models is later on more than compensated for, as
each full-wave simulation can be reused in the simultaneous
construction of all cost functions required to generate a very



dense Pareto-front of optimal solutions and to subsequently
evaluate additional constraints imposed by hardware.

IV. CONSTRAINED PARETO OPTIMIZATION OF THE FILTER

To find the optimal geometrical parameters of the common-
mode suppression filter, e.g. in the frequency band from DC
to 6 GHz, using Lp-norms [9] we define six cost functions as
follows:

cost1 =

[∫ 6 GHz

0 GHz

|sdd11(f)|2 df

]1/2
(1)

cost2 =

[∫ 6 GHz

0 GHz

(
|scd11(f)|2 + |scd21(f)|2

)
df

]1/2
(2)

cost3 =

[∫ 6 GHz

0 GHz

(
Ploss(f)

)
df

]1/2

=

[∫ 6 GHz

0 GHz

(
1− |sdd11(f)|2 − |sdd21(f)|2

− |scd11(f)|2 − |scd21(f)|2
)
df

]1/2
(3)

cost4 = max
f
|sdd11(f)| (4)

cost5 = max
f

√
|scd11(f)|2 + |scd21(f)|2 (5)

cost6 = max
f

√
Ploss(f) (6)

where the quantities sdd11, sdd21, scd11 and scd21 indicate
the pertinent frequency-dependent modal scattering parame-
ters. The costs (1)-(3), obtained using L2-norms (p = 2),
correspond to the mean-squared frequency average of the dif-
ferential reflection coefficient, the total differential-to-common
mode conversion and the total losses, respectively. The costs
(4)-(6) calculated using L∞-norms (p = ∞), provide the
maximum values of these parameters.

In a first step, relying on a single set of 100 full-wave
simulations, six surrogate models of the mentioned cost
functions are constructed using least-squares support vector
regression (SVR) [10] with a lola-voronoi sampling algorithm.
The samples are selected by the lola-voronoi sample selector
[11], evaluated and SVR models are updated until their cross-
validation decreases below 10−4, which provides sufficient
accuracy for the surrogate models to be used as a starting
point in a multi-objective optimization (Fig. 2). The planar-
3D full-wave simulator ADS-Momentum was used to obtain
full-wave results. The geometrical parameters w2 (with s2
chosen to provide a 50 Ω odd-mode impedance) and l2 were
varied over [0.1, 1] mm and [2, 8] mm, respectively. Each cost
function is approximated independently using a least-squared
SVR surrogate model [12]. A computer with a 3 GHz Quad
CPU and with 8 GB RAM needed 5 h 2 min in total to build
all models. Fig. 3 presents the surrogate models for (1)-(3)
based on the L2-norm. A higher differential-mode reflection
but also a better common-mode suppresion are found for

Fig. 2. Flow chart of the three-step optimization process.

smaller w2 (a more tightly coupled cross-section in the area
of the bend), as proven in Figs. 3(a) and 3(b), respectively.
Fig. 3(c) confirms that overall losses increase for increasing
l2 and decrease with increasing w2.

Second, the multi-objective optimization is performed
(Fig. 2) using the SPEA2 algorithm [13] with a population
size of 600 for 200 generations, to simultaneously minimize all
three cost functions for the L2-norms (10 min 2 s on the same
machine). If the full-wave simulations were not replaced by
the intermediate surrogate models, the complete optimization
time would be about 25 h 12 min (600 runs, each one taking
2 min 31 s). Fig. 4(a) shows the 3D Pareto-front [14] in the
performance space, restricted by the ranges over which w2

and l2 may vary given the technology constraints. Fig. 4(b)
represents the corresponding geometrical parameters of the
Pareto-front samples in the design space (for clarity, in Fig. 4
only 250 samples out of 600 are shown). Corner {1} of the
Pareto-front indicates samples with both w2 and l2 small (very
short and very tightly coupled lines in the area of the bend)
that provide very high mode conversion suppression, but also
large reflection and high power losses. In corner {2} of the
front, conversion loss remains very small while the differential
mode reflection decreases and the total losses increase as l2
increases. Differential mode reflection coefficient and total
losses are largely reduced while the conversion loss increases
in corner {3}, as the lines in the area of the bend are short
and weakly coupled.

Third, to reject designs that might be harmful for the
transmitter and/or receiver, additional constraints are imposed
to the Pareto-front (Fig. 2), using the surrogate models for the



(a) Surrogate model for cost1 (L2-norm).

(b) Surrogate model for cost2 (L2-norm).

(c) Surrogate model for cost3 (L2-norm).

Fig. 3. Surrogate models for the three cost functions of the chosen objectives
(black dots: 100 full-wave simulation samples; surface plot: surrogate model).

L∞-norms:

constraint1 : cost4 < −15 dB (7)
constraint2 : cost5 < −15 dB (8)
constraint3 : cost6 < 8 % (9)

The green circles (◦) on the Pareto-front represent designs
satisfying all three constraints. Blue squares (�), pink left-
pointing triangles (C) and dark violet triangles (4) indicate
layouts that violate the first, second and third constraint,
respectively. Orange diamonds (�) depict layouts violating
both first and third constraint. The sample labeled A is the
sample with geometry w2 = 0.45 mm, s2 = 0.18 mm
and l2 = 2.16 mm that provides the best solution in terms
of minimal averaged insertion loss < IL>, obtained when
all three costs are equally important, as follows: < IL>=
cost21 + cost22 + cost23, using the L2-norm for the costs i.e.
(1), (2) and (3). This might be the designer’s final choice.

(a) 3D Pareto-front in the performance space for the three cost functions.

(b) Pareto samples in the design space.

Fig. 4. 3D Pareto-front and its corresponding geometrical parameters (for
readability, only 250 out of 600 samples are shown).

V. TIME DOMAIN RESULTS

To validate the results obtained by the above described
strategy, three samples from three different groups of the
Pareto-front (Fig. 4(a)) were selected and analyzed in the
time domain. Sample A is the suggested optimal solution
with the geometry mentioned above, sample B is one of
the orange diamonds (w2 = 0.15 mm, s2 = 0.13 mm,
l2 = 3.49 mm) and sample C is one of the pink left pointing
triangles (w2 = 0.82 mm, s2 = 1.43 mm, l2 = 2.12 mm).
First, an analysis of noise introduced by mode conversion and
differential mode reflection was performed. A ramped step
signal is applied to the input port of the outer line, going
from 0 V up to 1 V with a rise time of tr = 30 ps, while at
the input port of the inner line a ramped step signal is going
from 0 V down to −1 V with a fall time of tf = 30 ps.
The output ports were matched to 50 Ω. Fig. 5 shows that
sample B performs the best, inducing only 20 mV of the
common mode noise at the receiving end. However, Fig. 6
shows that the same sample exhibits the highest reflected
differential mode noise (135 mV), making it an unacceptable
choice. For sample C the opposite behavior is noticed, yielding
80 mV of common mode noise at the receiver (Fig. 5), while
causing only 28 mV of reflected differential mode noise. Only
sample A, with 50 mV of common mode noise and 53 mV of
reflected differential mode noise (Figs. 5 and 6, respectively)
remains within acceptable limits.

Next, the input signal was replaced by a pseudo-random
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Fig. 5. Common mode noise at the receiver for the three bends.
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Fig. 6. Differential mode reflected noise at the transmitter for the three
bends.

bit sequence with a bit rate of 10 Gbps and a rise/fall time
tr/f = 30 ps and TDT eye diagrams (Fig. 7) were created
that confirm the previous conclusions. Since the eye diagrams
illustrate the quality of the signal at the receiver, sample B
provides the eye with the largest opening (Table I) and could
be considered as the best result. As stated above, however, this
sample exhibits a large reflected differential mode noise. The
eye diagram of the sample C creates the largest amount of the
common mode noise and as such it has the smallest eye in
terms of its width and height. Sample A, being the optimal
solution of the trade-off between common mode noise and
differential mode reflected noise, provides a very good and
clear eye diagram and it can be considered as an optimal

TABLE I
EYE DIAGRAM PARAMETERS

parameter sample A sample B sample C
height 0.795 V 0.815 V 0.757 V
width 95.8 ps 98.8 ps 95 ps
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(a) Sample A
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(b) Sample B
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(c) Sample C

Fig. 7. Eye diagrams for the three chosen samples.

solution. The above observations for samples A, B, and C,
derived from Figs. 5-7, comply with the location of these
samples on the constrained Pareto-front.

VI. CONCLUSION

A constrained multi-objective optimization strategy, using
intermediate surrogate models of the cost functions, that
determines the optimal parameter set of layouts for a common-
mode suppression filter has been presented. The 3D Pareto-



front, representing the set of feasible optimal designs, is
restricted to account for hardware constraints. The presented
methodology aids the EMC-aware designer in efficiently vi-
sualizing the design space and selecting an optimal solution
given conflicting costs while respecting the hardware limits.
Time domain analysis performed on three different samples
confirm the validity and efficiency of this method, showing
that the sample taken from the acceptable region of the Pareto-
front performs the best in terms of simultaneously reducing the
common-mode noise and the reflected differential-mode noise
on the one hand and providing a maximal throughput of the
differential signal on the other.
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