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 Abstract—A reliable methodology for accurate modeling of 
microwave devices is presented. Our approach exploits co-
kriging which utilizes low- and high-fidelity EM simulation data 
and combines them into a single surrogate model. Densely 
sampled low-fidelity data determines a trend function which is 
further corrected by sparsely sampled high-fidelity simulations. 
Low-fidelity EM data is also enhanced by using a frequency 
scaling. With our method, accurate models can be obtained at a 
fraction of cost required by conventional approximation models 
that are exclusively based on high-fidelity simulations. Two cases 
of microstrip bandpass filters are considered. Comparisons with 
conventional approximation models as well as application 
examples are also given. 

Index Terms—Microwave modeling, response-surface modeling, 
co-kriging, electromagnetic simulation. 

I. INTRODUCTION 
Accurate and fast models (surrogates) are indispensable in 

the design of microwave structures and components. Many 
design tasks, such as parametric optimization, statistical 
analysis or yield-driven optimization, require numerous 
evaluations of a structure of interest and the use of high-
fidelity electromagnetic (EM) simulations may be prohibitive 
because of unacceptably high computational cost. 

Cheap models can be obtained using response surface 
approximation techniques such as polynomial regression [1], 
radial basis functions [2], kriging [2], support vector 
regression [3], or artificial neural networks [4]. However, for 
good accuracy, these techniques require a large number of 
training points, which exponentially grows with the 
dimensionality of the design space. This high initial setup cost 
may be justifiable for multiple-use library models but not 
quite for one-time design and analysis of a specific structure. 

Low-cost microwave modeling can be realized using space 
mapping (SM) [5]. Reasonably accurate SM surrogate model can 
be created using a limited number of high-fidelity EM 
simulations by applying suitable correction to the underlying low-
fidelity (or coarse) model, e.g., equivalent circuit. A drawback of 
SM models is that increasing the number of training points may 
have little effect of the model’s quality [6]. Also, SM requires that 
the coarse model is very fast, as each evaluation of the SM 
surrogate requires evaluation of the underlying coarse model. 

In this paper, we consider models constructed using both high- 
and low-fidelity EM simulations. Simulation of coarsely-
discretized structure is less accurate but it is much faster than the 
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high-fidelity one. By means of co-kriging [7], densely sampled 
low-fidelity simulations are combined with limited number of 
high-fidelity ones. The resulting model is as accurate as 
conventional approximation based on high-fidelity data only but 
uses much smaller number of training points. In order to further 
improve the co-kriging model accuracy, we precondition low-
fidelity model data using frequency scaling. Also, a co-kriging 
covariance function [7] is suitably selected to be best suited to 
model sharp responses typical for many microwave devices, e.g., 
filters. The efficiency of the proposed approach is demonstrated 
using two microstrip filters. A comparison with conventional 
kriging interpolation [8] used here as a benchmark technique, as 
well as application of co-kriging models to parametric 
optimization is also given. 

II. CO-KRIGING-BASED FILTER MODELING 
A. EM-Simulation Models 

Our goal is to create a computationally cheap surrogate of 
the high-fidelity EM-simulated filter model Rf(x) which is 
accurate but expensive to evaluate. Here, x is a vector of 
designable (e.g., geometry) parameters. The components of Rf 
may represent, e.g., |S21| over the frequency band of interest. 
We also consider an auxiliary (low-fidelity) model Rc which is 
evaluated using the same EM solver, however, with coarser 
discretization. Rc is much faster than Rf but lacks accuracy.  
B. Kriging Interpolation 

Kriging, otherwise known as a Gaussian Process, is a 
compact and cheap interpolation technique frequently used to 
solve computational expensive design problems [1], [2], [8]. 
In particular, kriging is well-suited to handle deterministic 
noise-free data, though kriging can also be applied to 
stochastic simulation [12]. 

Given a base (training) set XB.KR = {xKR
1, xKR

2, …, 
xKR

NKR} ⊂ XR and the associated fine model responses 
Rf(XB.KR), then, the kriging interpolant is defined by, 

1
. .( ) ( ) ( ( ) )s KR f B KRM r X Fα α−= + ⋅ Ψ ⋅ −R x x R (1) 

where r(x) is an 1×NKR vector of correlations between the point x 
and the base set XB.KR, the entries are ri(x) = ψ(x,xKR

i), and Ψ is a 
NKR×NKR correlation matrix, with the entries given by Ψi,j = 
ψ(xKR

i, xKR
j). Furthermore, M and F are design matrices (=model 

matrices) of the test point x and the base set XB.KR, respectively. 
The coefficient vector α is determined by Generalized Least 
Squares (GLS), namely, Ψ Ψ . . 

In this work, we use kriging as a benchmark technique for 
comparison with the co-kriging approach of Section II.C. The 
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kriging surrogate model is configured with the exponential 
correlation function, i.e., ψ(x,y) = exp(∑k=1,...,n –θk|xk–yk|), 
where the parameters θ1, ..., θn are identified by Maximum 
Likelihood Estimation (MLE). The regression function is 
chosen constant, F = [1 ... 1]T and M = (1). 
C. Co-Kriging Surrogate Modeling 

Kriging has been extended in literature to handle different 
types of prior knowledge to enhance the prediction accuracy, e.g., 
gradient information, amount of noise on the data [12], etc. Of 
particular interest is the ability of kriging to properly integrate the 
Rf and Rc model data into its prediction. 

This technique, known as co-kriging [7], is actually the 
combination of two standard kriging models. The first kriging 
model Rs.KRc interpolates the coarse data (XB.KRc,Rc(XB.KRc)), while 
the second kriging model Rs.KRd is applied on the residuals of the 
fine data (XB.KRf,Rd), where Rd = Rf(XB.KRf) – ρ⋅Rc(XB.KRf). 

The resulting co-kriging interpolant is defined as 
1

. ( ) ( ) ( )s CO dM r Fα α−= + ⋅Ψ ⋅ −R x x R  (2) 
where the block matrices M, F, r(x) and Ψ can be written in 
function of the two separate kriging models Rs.KRc and Rs.KRd: 

2 2 2 2
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where (Fc,σc,Ψc,Mc) and (Fd,σd,Ψd,Md) are matrices obtained 
from the kriging models Rs.KRc and Rs.KRd, respectively (see 
Section II.B). In particular, σc

2 and σd
2 are process variances, 

while Ψc(⋅,⋅) and Ψd(⋅,⋅) denote correlation matrices of two 
datasets using the optimized θ1, ..., θn parameters and 
correlation function of the kriging models Rs.KRc and Rs.KRd, 
respectively. The parameter ρ is estimated as part of the MLE of 
the second kriging model. Furthermore, if not available, the 
response values Rc(XB.KRf) can be approximated by using the 
prediction of the first kriging model Rs.KRc, namely, Rc(XB.KRf) ≈ 
Rs.KRc(XB.KRf). 
D. Low-Fidelity Model Preconditioning. Frequency Scaling 

In order to improve the accuracy of the co-kriging model, the 
low-fidelity model Rc is preconditioned by means of frequency 
scaling to improve its alignment with the high-fidelity one. 
Typically, Rc(x) = Rc(x,f) = [Rc(x,f1) Rc(x,f2) …  Rc(x,fm)]T, 
where f = [f1  f2  fm]T are frequencies at which the low-fidelity 
model is evaluated. Preconditioning of Rc is realized as follows 

. 1( ) ( , ( )) [ ( , ( )) ... ( , ( )]T
c prec c c c mp R p f R p f= =R x R x f x x (4) 

where p is a scaling function determined to minimize 
misalignment between Rc and Rf at points from XB.KRf (high-
fidelity model data is available at these points anyway): 

.

2arg min || ( ) ( , ( )) ||
B KRf

f cXp
p p

∈
= −∑ x

R x R x f  (5) 

Here, as use third-order polynomial p(f) = p0 + p1f + p2f 
2 + 

p3f 3. In practice, the values of Rc(x,p(f)) are obtained by 
interpolating Rc(x,f) to frequencies p(f). 

III. VERIFICATION EXAMPLES 
A. CCDBR Filter 

Consider a second-order capacitively-coupled dual-behavior 
resonator (CCDBR) microstrip filter [9] shown in Fig. 1. The 
design parameters are x = [L1 L2 L3]T; S = 0.05 mm is fixed. 
The high- and low-fidelity models are simulated in FEKO 
[10]. Total mesh numbers for Rf and Rc are 1134 (evaluation 
time 19 min) and 130 (evaluation time 20 s), respectively. The 
surrogate model is set up in the interval [x – δ, x + δ] with 
x0 = [3 5 1.5]T mm, and δ = [1 1 0.5]T mm. 

The kriging and co-kriging models (Rs.KR, Rs.CO) are 
constructed using various numbers of training points (from NKR = 
20 to NKR = 400). Co-kriging models are configured using 400 Rc 
samples (the CPU cost of which corresponds to about 6 
evaluations of Rf). The modeling accuracy has been verified 
using 50 test points allocated randomly in the region of 
interest. We use the relative error measure ||Rf(x) –
 Rs(x)||/||Rf(x)|| expressed in percent.  

The modeling errors are shown in Table I (see also Fig. 2). 
The co-kriging model accuracy obtained with 20 Rf samples is 
as good as that of the kriging model obtained for 100 samples. 
In other words, our approach allows us to significantly reduce 
the computational cost of creating surrogate model compared 
to conventional approximation based on high-fidelity data 
only. 

 

 
Fig. 1. CCDBR filter: geometry [9]. 
 

 
Fig. 2. CCDBR filter: responses of Rf (—) and co-kriging surrogate model (o) at 
selected test points. Co-kriging model created using 50 evaluations of Rf and 400 
evaluations of Rc. 
 

TABLE I 
CCDBR FILTER: MODELING RESULTS 

Model 
Average Modeling Error [%] 

NKR = 20 NKR = 50 NKR = 100 NKR = 200 NKR = 400 
Rs.KR 12.3 7.3 6.0 4.5 3.2 
Rs.CO 5.9 5.3 4.3 4.0 3.5 
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B. Fourth-Order Ring-Resonator Bandpass Filter 
Consider a fourth-order ring resonator bandpass filter [11] 

shown in Fig. 1. The design parameters are x = [L1 L2 L3 
S1 S2 W1 W2]T. The high- and low-fidelity models are 
simulated in FEKO [10]. Total mesh numbers for Rf and Rc 
are 1344 (evaluation time 25 min) and 150 (evaluation time 
22 s), respectively. The surrogate model is set up in the 
interval [x – δ, x + δ] with x0 = [24 20 26 0.1 0.1 1.2 0.8]T 
mm, and δ = [2 2 2 0.05 0.05 0.1 0.1]T mm. The kriging and 
co-kriging models (Rs.KR, Rs.CO) are constructed as in the previous 
example. The CPU cost of 400 low-fidelity model evaluations 
used by Rs.CO corresponds to about 6 evaluations of Rf. 
 

IV. APPLICATION EXAMPLES 
The co-kriging surrogate models have been used to carry out 

design optimization of the filters considered in Section III. The 
design specifications for the CCDBR filter are: |S21| ≥ –3dB for 
3.8GHz to 4.2GHz and |S21| ≤ –20dB for 2GHz to 3.2GHz and for 
4.8GHz to 6GHz; initial design is xinit = [3 5 1]T mm. The 
specifications for the 4th-order ring resonator filter are: |S21| ≥ –
1dB for 1.75GHz to 2.25GHz and |S21| ≤ –20dB for 1GHz to 
1.5GHz and for 2.5GHz to 3GHz; initial design xinit = [25 20 25 
0.1 0.1 1.2 0.8]T mm. Figures 5 and 6 show the filter responses at 
the initial and optimized designs, with performance specifications 
satisfied in both cases. 

V. CONCLUSION 
Microwave filter modeling technique using variable-fidelity 

electromagnetic simulations, frequency scaling and co-kriging 
is presented. As demonstrated through examples, our approach 
allows creating fast and accurate models at low computational 
cost. 
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Fig. 3. Fourth-order ring-resonator bandpass filter: geometry [11] 

 
Fig. 4. CCDBR filter: responses of Rf (—) and co-kriging surrogate model (o) at 
selected test points. Co-kriging model created using 50 evaluations of Rf and 400 
evaluations of Rc. 
 

TABLE II 
4TH-ORDER RING RESONATOR FILTER: MODELING RESULTS 

Model 
Average Modeling Error [%] 

NKR = 20 NKR = 50 NKR = 100 NKR = 200 NKR = 400 
Rs.KR 13.7 10.8 4.1 3.4 2.5 
Rs.CO 3.4 3.3 2.8 2.5 2.4 

 

 
Fig. 5. CCDBR filter optimization using co-kriging surrogate: high-fidelity 
model responses at the initial (- - -) and at the optimized design (—). 

 
Fig. 6. Fourth-order ring-resonator filter optimization using co-kriging 
surrogate: high-fidelity model responses at the initial (- - -) and at the optimized 
design (—). 
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