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ABSTRACT

In this paper we present an efficient way to both compute atvd@x
salientinformation from trace transform signatures tdqren object
identification tasks. We also present a feature selectiatysis of
the classical trace-transform functionals, which revéas most of
them retrieve redundant information causing misleadingjlarity
measurements. In order to overcome this problem, we propese
of functionals based on Laguerre polynomials that retuthasror-
mal signatures between these functionals. In this way, gigciature
provides salient and non-correlated information that ibates to
the description of an image object. The proposed functionare
tested considering a vehicle identification problem, ottpening
the classical trace transform functionals in terms of cotafnal
complexity and identification rate.

Index Terms— Object identification, Trace transform, Or-

thonormal signatures, Laguerre polynomials, Featuresete

1. INTRODUCTION

TheTrace transforms a radial projection transformation that allows

one to construct image features that are invariant to a chgsRIp
of image transformations [1]. The trace transform can beicened
as a generalization of the Radon transform, which is wideldun
computational tomography. The main object of the tracesfam
is to obtain image descriptors such as shegram circus function
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works have shown the robustness of the trace transform waiiftiar
ent image variations such as affine geometrical distortiongven
illumination, noise perturbations and occlusions. Howgitéas not
been extensively exploited due to its high computationaigexity,
as discussed in [8]. The main inconvenience lies in the lawmeber
of functionals applied over the tracing lines at differerientations
of the image, which demands significant processing powerte No
that most of the aforementioned literature showed very geodg-
nition results at the expense of a high computational coxityle=or
instance, Kadyrov and Petrou [9] employed 42 circus fumstim
order to characterize an image in an exercise of fish redognit
On the other hand, Srisuk et al. [2] proposed a face auttatitic
system based on 22 trace transform sinograms, where thaiant
edges were used as descriptors. As a reference of the sydtera
complexity, this paper reports that the feature extraaiwhtraining
process of 2360 faces takes 100h, while every image testtoobkt
30s.

In this paper we present a statistical analysis, which cafed
that some of the functionals widely used in the literatunevey very
similar information. As a result, they can be consideredineldnt,
since they really do not contribute with new evidence torilisinate
between images. Likewise, such redundant features repraseir-
den for the system from a computational point of view. In oride
overcome these problems, we propose a set of orthonorneldan
als based om.aguerre polynomial$n order to derive orthonormal
circus functions. The idea is to generate non-correlatedri®ors
that contribute independently to the decision whether twage ob-

or triple featureto perform object recognition tasks. Such descrip-jects are similar or not. In this way, we can increase thetifiea-

tors are computed in a cascade fashion from the trace tramsfe-
ducing its dimensionality at each processing stage. Intshace
transform descriptors are obtained by applying a functiaredled

tion performance and reduce the computational overhe&e atime
time.
The paper is organized as follows. In section 2, a featuecsel

traceor T-functional, over the tracing lines of an image at different tion analysis of the classical trace transform functiorsggsesented.

angular orientations. The resulting image is referred tsimsgram
which in turn is a transformation from the euclidean spagg)(into

In section 3, we describe the procedure to derive orthonlasimas
functions from Laguerre polynomials. Section 4 evaluabesiden-

a Hough spacep( 0). The sinogram can be further processed bytification performance of the orthonormal circus functiofnally,

applying another functional, called diametricalRfunctional, over
the radial coordinate returning a 1-D signature catliecus function
Finally, the description of an image can be still reduced fiyiyng
another functional, referred to d@sfunctional, over the circus func-
tion returning a single value, known &fple feature

Applications based on the trace transform span over sevbral
ject recognition and identification tasks such as face itieation [2,
3], human action recognition [4], image retrieval [5, 6],vesll as
parameter estimation of geometrical transformations Pfevious

This work has been supported by the Flemish Interdisciplifastitute
for Broadband Technology (IBBT) and by the Flemish Fund foieS8tific
Research.

the conclusions of this work are stated in section 5.

2. FEATURE SELECTION ANALYSIS OF THE TRACE
TRANSFORM SIGNATURES

When different features are extracted from an image to parfib-
ject identification tasks, we expect such descriptors tormmue-
lated to each other. In this way, we can match image pairgithesc
with very similar features and discriminate among otherdidaie
images. For the trace-transform features, the indepeedamong
circus functions is assumed by using different functionidiswever,
in reality, such assumption does not always hold, which nialdy
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Fig. 1. Correlation among differerff-functionals.

highly correlated circus functions. As a result, severahete sig-
natures may carry superfluous information and provide lgnefit
to the identification performance.

Note that in previous works, the features extracted frontréme
transform for classification or identification problems athto ob-
tain features invariant to geometrical distortions. Néweless, little

Table 1. List of T-functionals.

Code Functional
T TG@) = [y, r70dr
2 T(f(t) = [, r*Fr)dr
3 T(W) = [, @™ i f(rr)dr]
4 T(fW) = [, €0 fra)dn|
5 T(f®) = Ifp, i f(r)dr]
6 T(f(1)) = medians,so {Irif(ro)], 1£(ro)] "/}
7 T(f(t) = medians, o {|£()], £/

Note:r = ¢ — ¢, ¢ = median({ti}r, {If(t)|}x)
r =t —c1, 1 = median({ty}r, {|f )]/ *}x)

Table 2. List of P-functionals.
Code Functional

1 Pg(p)) =>4 l9(pe+1) — g(pr)]
2 P(g(p)) = median({g(pr)}, , {lg(pr)I},)
3 P(g(p) = [19{g(p)}(w)|*dw

2 and 3 returned a correlation of 0.5382. Consequentlyhake
threeP-functionals are not highly correlated to each other, altfio
their values are neither negligible.

was known about their actual discriminative power. For&inse, in The feature selection ana|ysis shows that most of the chkdssi
the seminal paper of Kadyrov and Petrou [5] several ways B cO functionals employed in the literature convey redundafiorination.
struct functionals that comply with the affine invariancexditions  Consequently, it is expected that some of those functioraisbe
were presented. However, there is no guarantee that a gitef s discarded, while retaining most of the discriminatory imfation.

those functionals provide uncorrelated features, and shéficient
discriminatory information. As a result, feature selestioethods

may shed some light on how to choose the most important fumcti
als in order to reduce their number and at the same time ratain

much as possible the discriminatory information.

In order to evaluate the dependency between functionals pr

posed in the literature, we performed a feature selectiatyais

based on thélter approach The filter approach is a combinatorial

optimization method that attempts to find the best featurelioa-
tions from a pool of choices by evaluating an optimalityenig. A
review of several feature selection methods can be fountOh [

In section 4 we will discuss in more detail the actual impddhe
feature selection analysis on the identification perforcean

3. ORTHONORMAL CIRCUS FUNCTIONS

s stated in section 2, the circus functions generated bgrelated

functionals are the most salient and efficient features sorilee an
image object. The feature selection analysis brought tut ligfor-
mation about the performance of the functionals, and gaweeso
hints about how to intuitively pick good functional combiioas.
However, any functional combination chosen from Tablesd &is

A feature selection analysis was performed to evaluateithe s 5 from optimal in terms of information efficiency. In othenrds,

natures’ correlation coefficient resulting from tiefunctionals and
P-functionals presented in Table 1 and 2, respectively. Nwein

no combination of functionals yields uncorrelated circusdtions,
as shown in Fig. 1. As a result, it is necessary to propose afset

these tablesf(¢) is the signal along the tracing line of the param- ¢, ctionals that guarantee the independence of the citmtibns

etert, while g(p) represents a diametric trace line of the sinogram
The assessment of these functionals was performed wit

G(p,0).
a vehicle image database which contains 1131 exemplarsedebr
image we computed 7-funct. x 3 P-funct. = 21 circus functions.

In Fig. 1, we present the average correlation coefficierweeh
circus functions derived from each possible pairléfunctionals.
From this figure, we can readily notice that the correlatibime sig-

natures derived from th&-functionals 1 and 2 is the largest. This

result suggests that these two functionals convey verylairimfor-
mation. Also, the pairs resulting from tfféfunctionals 3, 4 and 5
seem to convey redundant information. Note that each grbiuymo-
tionals mentioned above has similar weighting kernels. Aessalt,
we may conclude that the signatures’ dependency may bdyange
fluenced by the weighting kernel of the functional. Convistdte
combination of functionals whose weighting kernel is difiet .9,
2,5 and 7) returned lower correlations, and thus less rezhoyd

A similar statistical analysis was performed for tRgunctionals.
The outcome of this test revealed that the average cowalie-

ﬁenerated. Hence, the following condition should be feldl

o (ha0).h(0)
T (0) [T (O)]

whereh., (6) = (wn(p), G(p, 8)) is the circus function obtained via
the inner product between the weighting keragl(p) and the sino-
gramG(p, ).
tions depends on both the weighting kernel and the sinogiReoall
that in the previous section we found out that the weightiagkls
of classical functionals have a substantial influence orfé¢btires’
saliency. For this reason, it is necessary to find a set of viieig
kernels able to fulfill (1). Note that if we assume that theogiam is
orthonormal, that i$G(p, 0), G(p', 0)) = §(p —p’), we can rewrite
(1) as follows:

5(n —m) (1)

(wn(p), wm(p)) _
[[wn () [ l|wm ()|

= o(n —m) (2)

tween the P-functionals 1 and 2 was 0.4507, while for the P- where the dependency among circus functions lies exclysoxer

functionals 1 and 3 was 0.4554. The combination of the fonetis

the weighting kernels. In practice, in order to comply whie sino-

Therefore, the independence between circus func-



gram orthonormalization condition, timearest orthonormal matrix
of the sinogranti is derived as follows:

I = argmin||Q — G||» subjectto Q7Q =1
Q

where(2 is any orthonormal matrixI" is the nearest orthonormal
matrix, and||-|| » is the Frobenius norm. Séhemann proposed an
efficient solution to this problem based on the singularealecom-
position (SVD) [11].

In light of (2), the correlation coefficient between circus¢-
tions solely depends on the correlation of the weightingfioms.
Therefore, we propose a set of orthonormal weighting kerdet
rived from the Laguerre polynomials,(p), which fulfill the or-
thonormality condition as follows

/0 " L(®) L (p)ePdp = 5(n — m) ()

The polynomials can be derived by using the following reence
relation Ly 41 (p) = k+1((2k +1—p)Li(p) — kLr—1(p)), given

thatLo = 1 andL; = 1 — p. Note that (4) can be factorized as

shown in (5), and by analogy between (2) and (5), we concloale t
the orthonormal weighting kernels can be defined as in (6).

/Ooo (Ln(p)e_m) (Lm(p)e_p/z) dp=34(n—m) (5)

wn(p) = Ln(p)e "/* (6)
Finally, the diametric-orthonormal functionals can beressed as

P(g(p)) = / Lo(2)e*?~(2)dz

Ry

™

wherez = p — ¢z andes = median({px}x, {|9(px)|}x), while
~(z) is a diametric trace line of the nearest orthonormal mdtrikn
summary, the orthonormal circus functions are generatéallaw/s:

1. Generate the trace transform sinogréftp, ¢) of an image
by using low correlated -functionals.

2. Change the domain of the sinogram frpro z.

3. Obtain theNearest Orthonormal SinografiNOS) via SVD,
as described in [11].

4. Apply the LaguerreP-functionals derived in (7) over the
NOS.

It is worth to mention that the proposed functionals do ndtlfthe
homogeneity properties established in [1]. However, wé stibw
in the following section that under moderate scale diffeesn the
orthonormal functionals achieve a better identificatiorfgrenance
than the homogeneous functionals.

4. EXPERIMENTAL RESULTS

In order to test the proposed improvements, we performedighee
identification experiment by comparing the performancehefiro-
posed orthonormal circus functions against the classispicach

proposed by Petrou and Kadyrov [1]. The aim is to get the cbrre

correspondence between two sets of vehicle images thattiesmre
captured under different conditions. For this experimemb, corre-
sponding images may experience translation, scale, iflatitin and
pose variations. Some examples of the tested images amenpeds
in Fig. 2. These images were captured from different suargke

'

Fig. 2. Sample of vehicle images captured in a tunnel.

cameras placed in a tunnel. Their bit-depth is 8-bit graglesand
their resolution is 85 x 85 pixels. The first row in Fig. 2 shoavs
group of vehicles that have been captured by one of the camera
in the tunnel, while the second row shows their correspandio-
servation registered from another camera at a differerepdd the
tunnel. The group of vehicles found in the third rde nothave any
correspondence with the vehicles depicted before; hoythesr re-
semblance may lead to identification errors. Note that dpart the
close similarity among vehicles, the geometrical distorsibetween
corresponding images and the poor illumination condititoms the
vehicle identification problem into a challenging task.

The image database is composed of 377 vehicles. Each vehicle
has 3 image instances taken from 3 cameras with non-ovénigpp
view. For each image we computed/#funct. x 3 P-funct. =
21 circus functions derived from the combination of the vkelbwn
functionals shown in Tables 1 and 2. On the other hand, the or-
thonormal circus functions were computed using th&nctionals
with the lowest correlation between theire( 2, 5, 6, and 7 ) ac-
cording to Fig. 1. Then, the Laguerféfunctionals, defined in (7),
were applied using the following polynomials (z) = 1 — z and
L»(z) = 12° — 22 4 1. As aresult, 8 orthonormal circus functions
were generated from the combination of'4and 2 P-functionals.

In Fig. 3 we present the feature selection analysis of the or-
thonormal circus functions for all possible-functional combina-
tions. Note that the same analysis was presented in Fig.tfpbu
non-orthonormal signatures. By comparing both figures, a® c
verify that with the orthonormal circus functions the cdat®mn de-
creased in average by 50% for the saft@unctional combinations.
On the other hand, the average correlation between sigrsagener-
ated by the two Laguerr®-functionals was 0.1139, which is much
lower than the average of 0.4814 obtained with fhdunctionals
of Table 2. Note that despite the correlation values wereexet
actly zero for the orthonormal signatures, the correlatiball com-
binations was considerably low. This experimental-thgoaédis-
crepancy is mainly due to finite precision errors during nricag
integration, quasi-orthonormality of the NOS, as well as Weak
correlation that persists amofigfunctionals.

The identification process was performed by comparing the ci
cus functions of all possible matching combinations betwiveo
groups of vehicles captured from different cameras. Inwayg, a
confusion matrix is created, which serves to the Hungatigorsghm
to find the optimal assignment between vehicle groups. In&ige
can observe the identification performance of the circustfans
derived with the classical and orthonormal circus functiofNote
that the identification performance was assessed underetiff de-
grees of uncertainty by varying the size of the group of Vekic
(matching window). The identification rate for each windowes
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Fig. 3. T-functional intercorrelation with orthonormal signatsire

was computed by finding the correspondence of 50 differemtie
groups extracted from the 377 vehicles, and then averagenglen-
tification rate of all the groups. The circle-marked line diers the
identification performance when the traditional functilsrere used.
The similarity between vehicles was evaluated by averatjiagop
8 ranked similarity coefficients out of 21, as suggested jnyjield-

ing the worst performance. On the other hand, if all the 27ilaim
ity coefficients are averaged (asterisk-marked line), #réopmance
improves considerably. The star-marked line shows theageeof
the similarity coefficients derived from tHE-functionals 2, 5, 6, 7

and theP-functionals 1 and 2, slightly improving the performance

compared to the simple full average. Recall that those fonats
are the most uncorrelated to each other. It should be nostdigx
spite the identification rate did not increase significartlg compu-
tational cost was considerably reduced since only 8 cirenstfons

made the job of 21 of them, thanks to the feature selectiofyana

sis. As a result, we can conclude that redundant signatuagdend
to deceiving similarity measures and overload the comjmutat re-
sources. Finally, the triangle-marked curve shows thetifiestion
performance of the orthonormal signatures. Note that éurithen-
tification rate gains were achieved by minimizing the depemg
among signatures, and thus enhancing their discrimingtbveer.
Also, it should be remarked that only 8 signatures were uss@ad
of 21 without appealing to a feature selection analysis¢& pp the
best functional combination.

Having analyzed the performance of the orthonormal sigeatu

in terms of information efficiency and identification rates @an con-
clude that the proposed method provides three importartradges
over the original method proposed by Petrou and Kadyrov[1Lihe
method guarantees that all circus functions are only diigtdrre-
lated to each other, which provides saliency on each of tlgejrif
additional orthonormal signatures are necessary, there ieed to
perform a feature selection analysis to verify that the navefionals

retrieve uncorrelated informationiii( the orthonormal signatures

may achieve a higher identification performance than ttdtiomal
approach with a much lower number of signatures.

5. CONCLUSIONS

A novel method to derive orthonormal circus functions frome t
trace transform was proposed in this paper. A feature sefect

analysis of the traditional trace transform functionalsegded that

most of them are highly correlated to each other. Consetyient

most of these functionals retrieve descriptors that aréfidmnt

in terms of the information conveyed as well as computatigna
expensive. In order to overcome these problems, we propased
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Fig. 4. Identification performance for different matching window

set of P-functionals based on Laguerre polynomials that, together
with the orthonormalization of the sinogram, return nodenedant
circus functions. In this way, we were able to reduce the num-
ber of signatures and maximize the information conveyedhauit
compromising the identification performance.
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