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ABSTRACT

In this paper we present an efficient way to both compute and extract
salient information from trace transform signatures to perform object
identification tasks. We also present a feature selection analysis of
the classical trace-transform functionals, which revealsthat most of
them retrieve redundant information causing misleading similarity
measurements. In order to overcome this problem, we proposea set
of functionals based on Laguerre polynomials that return orthonor-
mal signatures between these functionals. In this way, eachsignature
provides salient and non-correlated information that contributes to
the description of an image object. The proposed functionals were
tested considering a vehicle identification problem, outperforming
the classical trace transform functionals in terms of computational
complexity and identification rate.

Index Terms— Object identification, Trace transform, Or-
thonormal signatures, Laguerre polynomials, Feature selection.

1. INTRODUCTION

TheTrace transformis a radial projection transformation that allows
one to construct image features that are invariant to a chosen group
of image transformations [1]. The trace transform can be considered
as a generalization of the Radon transform, which is widely used in
computational tomography. The main object of the trace transform
is to obtain image descriptors such as thesinogram, circus function,
or triple featureto perform object recognition tasks. Such descrip-
tors are computed in a cascade fashion from the trace transform, re-
ducing its dimensionality at each processing stage. In short, trace
transform descriptors are obtained by applying a functional, called
traceor T-functional, over the tracing lines of an image at different
angular orientations. The resulting image is referred to assinogram,
which in turn is a transformation from the euclidean space (x,y) into
a Hough space (p, θ). The sinogram can be further processed by
applying another functional, called diametrical orP-functional, over
the radial coordinate returning a 1-D signature calledcircus function.
Finally, the description of an image can be still reduced by applying
another functional, referred to asΦ-functional, over the circus func-
tion returning a single value, known astriple feature.

Applications based on the trace transform span over severalob-
ject recognition and identification tasks such as face identification [2,
3], human action recognition [4], image retrieval [5, 6], aswell as
parameter estimation of geometrical transformations [7].Previous
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works have shown the robustness of the trace transform underdiffer-
ent image variations such as affine geometrical distortions, uneven
illumination, noise perturbations and occlusions. However, it has not
been extensively exploited due to its high computational complexity,
as discussed in [8]. The main inconvenience lies in the largenumber
of functionals applied over the tracing lines at different orientations
of the image, which demands significant processing power. Note
that most of the aforementioned literature showed very goodrecog-
nition results at the expense of a high computational complexity. For
instance, Kadyrov and Petrou [9] employed 42 circus functions in
order to characterize an image in an exercise of fish recognition.
On the other hand, Srisuk et al. [2] proposed a face authentication
system based on 22 trace transform sinograms, where their relevant
edges were used as descriptors. As a reference of the system’s time
complexity, this paper reports that the feature extractionand training
process of 2360 faces takes 100h, while every image test tookabout
30s.

In this paper we present a statistical analysis, which concludes
that some of the functionals widely used in the literature convey very
similar information. As a result, they can be considered redundant,
since they really do not contribute with new evidence to discriminate
between images. Likewise, such redundant features represent a bur-
den for the system from a computational point of view. In order to
overcome these problems, we propose a set of orthonormal function-
als based onLaguerre polynomialsin order to derive orthonormal
circus functions. The idea is to generate non-correlated descriptors
that contribute independently to the decision whether two image ob-
jects are similar or not. In this way, we can increase the identifica-
tion performance and reduce the computational overhead at the same
time.

The paper is organized as follows. In section 2, a feature selec-
tion analysis of the classical trace transform functionalsis presented.
In section 3, we describe the procedure to derive orthonormal circus
functions from Laguerre polynomials. Section 4 evaluates the iden-
tification performance of the orthonormal circus functions. Finally,
the conclusions of this work are stated in section 5.

2. FEATURE SELECTION ANALYSIS OF THE TRACE
TRANSFORM SIGNATURES

When different features are extracted from an image to perform ob-
ject identification tasks, we expect such descriptors to be uncorre-
lated to each other. In this way, we can match image pairs described
with very similar features and discriminate among other candidate
images. For the trace-transform features, the independence among
circus functions is assumed by using different functionals. However,
in reality, such assumption does not always hold, which may yield
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Fig. 1. Correlation among differentT -functionals.

highly correlated circus functions. As a result, several ofthese sig-
natures may carry superfluous information and provide little benefit
to the identification performance.

Note that in previous works, the features extracted from thetrace
transform for classification or identification problems aimed to ob-
tain features invariant to geometrical distortions. Nevertheless, little
was known about their actual discriminative power. For instance, in
the seminal paper of Kadyrov and Petrou [5] several ways to con-
struct functionals that comply with the affine invariance conditions
were presented. However, there is no guarantee that a given set of
those functionals provide uncorrelated features, and thussufficient
discriminatory information. As a result, feature selection methods
may shed some light on how to choose the most important function-
als in order to reduce their number and at the same time retainas
much as possible the discriminatory information.

In order to evaluate the dependency between functionals pro-
posed in the literature, we performed a feature selection analysis
based on thefilter approach. The filter approach is a combinatorial
optimization method that attempts to find the best feature combina-
tions from a pool of choices by evaluating an optimality criteria. A
review of several feature selection methods can be found in [10].

A feature selection analysis was performed to evaluate the sig-
natures’ correlation coefficient resulting from theT -functionals and
P -functionals presented in Table 1 and 2, respectively. Notethat in
these tables,f(t) is the signal along the tracing line of the param-
etert, while g(p) represents a diametric trace line of the sinogram
G(p, θ). The assessment of these functionals was performed with
a vehicle image database which contains 1131 exemplars. Foreach
image we computed 7T -funct.× 3P -funct. = 21 circus functions.

In Fig. 1, we present the average correlation coefficient between
circus functions derived from each possible pair ofT -functionals.
From this figure, we can readily notice that the correlation of the sig-
natures derived from theT -functionals 1 and 2 is the largest. This
result suggests that these two functionals convey very similar infor-
mation. Also, the pairs resulting from theT -functionals 3, 4 and 5
seem to convey redundant information. Note that each group of func-
tionals mentioned above has similar weighting kernels. As aresult,
we may conclude that the signatures’ dependency may be largely in-
fluenced by the weighting kernel of the functional. Conversely, the
combination of functionals whose weighting kernel is different (e.g.,
2, 5 and 7) returned lower correlations, and thus less redundancy.

A similar statistical analysis was performed for theP -functionals.
The outcome of this test revealed that the average correlation be-
tween theP -functionals 1 and 2 was 0.4507, while for the P-
functionals 1 and 3 was 0.4554. The combination of the functionals

Table 1. List of T -functionals.
Code Functional

1 T (f(t)) =
∫

R+
rf(r)dr

2 T (f(t)) =
∫

R+
r2f(r)dr

3 T (f(t)) = |
∫

R+
ei5log(r1)r1f(r1)dr|

4 T (f(t)) = |
∫

R+
ei3log(r1)f(r1)dr1|

5 T (f(t)) = |
∫

R+
ei4log(r1)r0.51 f(r1)dr1|

6 T (f(t)) = mediantk>0

{

|r1f(r1)|, |f(r1)|
1/2

}

7 T (f(t)) = mediantk>0

{

|f(r)|, |f(r)|1/2
}

Note:r = t− c, c = median({tk}k, {|f(tk)|}k)

r1 = t− c1, c1 = median({tk}k, {|f(tk)|
1/2}k)

Table 2. List of P -functionals.
Code Functional

1 P (g(p)) =
∑

k |g(pk+1)− g(pk)|
2 P (g(p)) = median({g(pk)}k , {|g(pk)|}k)
3 P (g(p)) =

∫

|F{g(p)}(ω)|4dω

2 and 3 returned a correlation of 0.5382. Consequently, all these
threeP -functionals are not highly correlated to each other, although
their values are neither negligible.

The feature selection analysis shows that most of the classical
functionals employed in the literature convey redundant information.
Consequently, it is expected that some of those functionalscan be
discarded, while retaining most of the discriminatory information.
In section 4 we will discuss in more detail the actual impact of the
feature selection analysis on the identification performance.

3. ORTHONORMAL CIRCUS FUNCTIONS

As stated in section 2, the circus functions generated by uncorrelated
functionals are the most salient and efficient features to describe an
image object. The feature selection analysis brought to light infor-
mation about the performance of the functionals, and gave some
hints about how to intuitively pick good functional combinations.
However, any functional combination chosen from Tables 1 and 2 is
far from optimal in terms of information efficiency. In otherwords,
no combination of functionals yields uncorrelated circus functions,
as shown in Fig. 1. As a result, it is necessary to propose a setof
functionals that guarantee the independence of the circus functions
generated. Hence, the following condition should be fulfilled:

ρ =
〈hn(θ), hm(θ)〉

‖hn(θ)‖‖hm(θ)‖
= δ(n−m) (1)

wherehn(θ) = 〈wn(p), G(p, θ)〉 is the circus function obtained via
the inner product between the weighting kernelwn(p) and the sino-
gramG(p, θ). Therefore, the independence between circus func-
tions depends on both the weighting kernel and the sinogram.Recall
that in the previous section we found out that the weighting kernels
of classical functionals have a substantial influence on thefeatures’
saliency. For this reason, it is necessary to find a set of weighting
kernels able to fulfill (1). Note that if we assume that the sinogram is
orthonormal, that is〈G(p, θ), G(p′, θ)〉 = δ(p−p′), we can rewrite
(1) as follows:

ρ =
〈wn(p), wm(p)〉

‖wn(p)‖‖wm(p)‖
= δ(n−m) (2)

where the dependency among circus functions lies exclusively over
the weighting kernels. In practice, in order to comply with the sino-



gram orthonormalization condition, thenearest orthonormal matrix
of the sinogramG is derived as follows:

Γ = argmin
Ω

‖Ω−G‖F subject to ΩTΩ = I (3)

whereΩ is any orthonormal matrix,Γ is the nearest orthonormal
matrix, and‖·‖F is the Frobenius norm. Schönemann proposed an
efficient solution to this problem based on the singular value decom-
position (SVD) [11].

In light of (2), the correlation coefficient between circus func-
tions solely depends on the correlation of the weighting functions.
Therefore, we propose a set of orthonormal weighting kernels de-
rived from the Laguerre polynomialsLk(p), which fulfill the or-
thonormality condition as follows

∫

∞

0

Ln(p)Lm(p)e−p
dp = δ(n−m) (4)

The polynomials can be derived by using the following recurrence
relationLk+1(p) = 1

k+1
((2k + 1 − p)Lk(p) − kLk−1(p)), given

thatL0 = 1 andL1 = 1 − p. Note that (4) can be factorized as
shown in (5), and by analogy between (2) and (5), we conclude that
the orthonormal weighting kernels can be defined as in (6).

∫

∞

0

(

Ln(p)e
−p/2

)(

Lm(p)e−p/2
)

dp = δ(n−m) (5)

wn(p) = Ln(p)e
−p/2 (6)

Finally, the diametric-orthonormal functionals can be expressed as

P (g(p)) =

∫

R+

Ln(z)e
−z/2

γ(z)dz (7)

wherez = p − c3 andc3 = median({pk}k, {|g(pk)|}k), while
γ(z) is a diametric trace line of the nearest orthonormal matrixΓ. In
summary, the orthonormal circus functions are generated asfollows:

1. Generate the trace transform sinogramG(p, θ) of an image
by using low correlatedT -functionals.

2. Change the domain of the sinogram fromp to z.

3. Obtain theNearest Orthonormal Sinogram(NOS) via SVD,
as described in [11].

4. Apply the LaguerreP -functionals derived in (7) over the
NOS.

It is worth to mention that the proposed functionals do not fulfill the
homogeneity properties established in [1]. However, we will show
in the following section that under moderate scale differences, the
orthonormal functionals achieve a better identification performance
than the homogeneous functionals.

4. EXPERIMENTAL RESULTS

In order to test the proposed improvements, we performed a vehicle
identification experiment by comparing the performance of the pro-
posed orthonormal circus functions against the classical approach
proposed by Petrou and Kadyrov [1]. The aim is to get the correct
correspondence between two sets of vehicle images that havebeen
captured under different conditions. For this experiment,two corre-
sponding images may experience translation, scale, illumination and
pose variations. Some examples of the tested images are presented
in Fig. 2. These images were captured from different surveillance

Fig. 2. Sample of vehicle images captured in a tunnel.

cameras placed in a tunnel. Their bit-depth is 8-bit gray-scale and
their resolution is 85 x 85 pixels. The first row in Fig. 2 showsa
group of vehicles that have been captured by one of the cameras
in the tunnel, while the second row shows their corresponding ob-
servation registered from another camera at a different place of the
tunnel. The group of vehicles found in the third rowdo nothave any
correspondence with the vehicles depicted before; however, their re-
semblance may lead to identification errors. Note that apartfrom the
close similarity among vehicles, the geometrical distortions between
corresponding images and the poor illumination conditionsturn the
vehicle identification problem into a challenging task.

The image database is composed of 377 vehicles. Each vehicle
has 3 image instances taken from 3 cameras with non-overlapping
view. For each image we computed 7T -funct. × 3 P -funct. =
21 circus functions derived from the combination of the well-known
functionals shown in Tables 1 and 2. On the other hand, the or-
thonormal circus functions were computed using theT -functionals
with the lowest correlation between them (i.e., 2, 5, 6, and 7 ) ac-
cording to Fig. 1. Then, the LaguerreP -functionals, defined in (7),
were applied using the following polynomialsL1(z) = 1 − z and
L2(z) =

1
2
z2 − 2z + 1. As a result, 8 orthonormal circus functions

were generated from the combination of 4T - and 2P -functionals.
In Fig. 3 we present the feature selection analysis of the or-

thonormal circus functions for all possibleT -functional combina-
tions. Note that the same analysis was presented in Fig. 1, but for
non-orthonormal signatures. By comparing both figures, we can
verify that with the orthonormal circus functions the correlation de-
creased in average by 50% for the sameT -functional combinations.
On the other hand, the average correlation between signatures gener-
ated by the two LaguerreP -functionals was 0.1139, which is much
lower than the average of 0.4814 obtained with theP -functionals
of Table 2. Note that despite the correlation values were notex-
actly zero for the orthonormal signatures, the correlationof all com-
binations was considerably low. This experimental-theoretical dis-
crepancy is mainly due to finite precision errors during numerical
integration, quasi-orthonormality of the NOS, as well as the weak
correlation that persists amongT -functionals.

The identification process was performed by comparing the cir-
cus functions of all possible matching combinations between two
groups of vehicles captured from different cameras. In thisway, a
confusion matrix is created, which serves to the Hungarian algorithm
to find the optimal assignment between vehicle groups. In Fig. 4, we
can observe the identification performance of the circus functions
derived with the classical and orthonormal circus functions. Note
that the identification performance was assessed under different de-
grees of uncertainty by varying the size of the group of vehicles
(matching window). The identification rate for each window size
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Fig. 3. T -functional intercorrelation with orthonormal signatures.

was computed by finding the correspondence of 50 different vehicle
groups extracted from the 377 vehicles, and then averaging the iden-
tification rate of all the groups. The circle-marked line denotes the
identification performance when the traditional functionals are used.
The similarity between vehicles was evaluated by averagingthe top
8 ranked similarity coefficients out of 21, as suggested in [9], yield-
ing the worst performance. On the other hand, if all the 21 similar-
ity coefficients are averaged (asterisk-marked line), the performance
improves considerably. The star-marked line shows the average of
the similarity coefficients derived from theT -functionals 2, 5, 6, 7
and theP -functionals 1 and 2, slightly improving the performance
compared to the simple full average. Recall that those functionals
are the most uncorrelated to each other. It should be noted that de-
spite the identification rate did not increase significantly, the compu-
tational cost was considerably reduced since only 8 circus functions
made the job of 21 of them, thanks to the feature selection analy-
sis. As a result, we can conclude that redundant signatures may lead
to deceiving similarity measures and overload the computational re-
sources. Finally, the triangle-marked curve shows the identification
performance of the orthonormal signatures. Note that further iden-
tification rate gains were achieved by minimizing the dependency
among signatures, and thus enhancing their discriminativepower.
Also, it should be remarked that only 8 signatures were used instead
of 21 without appealing to a feature selection analysis to pick up the
best functional combination.

Having analyzed the performance of the orthonormal signatures
in terms of information efficiency and identification rate, we can con-
clude that the proposed method provides three important advantages
over the original method proposed by Petrou and Kadyrov [1]:(i) the
method guarantees that all circus functions are only slightly corre-
lated to each other, which provides saliency on each of them;(ii ) if
additional orthonormal signatures are necessary, there isno need to
perform a feature selection analysis to verify that the new functionals
retrieve uncorrelated information; (iii ) the orthonormal signatures
may achieve a higher identification performance than the traditional
approach with a much lower number of signatures.

5. CONCLUSIONS

A novel method to derive orthonormal circus functions from the
trace transform was proposed in this paper. A feature selection
analysis of the traditional trace transform functionals revealed that
most of them are highly correlated to each other. Consequently,
most of these functionals retrieve descriptors that are inefficient
in terms of the information conveyed as well as computationally
expensive. In order to overcome these problems, we proposeda
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Fig. 4. Identification performance for different matching windows.

set ofP -functionals based on Laguerre polynomials that, together
with the orthonormalization of the sinogram, return non-redundant
circus functions. In this way, we were able to reduce the num-
ber of signatures and maximize the information conveyed without
compromising the identification performance.
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