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Abstract—Previously, we introduced an available seat counting
algorithm in public rail transport. The main disadvantage of that
algorithm is that it lacks automatic event detection. In this paper,
we implement two automatic wavelet-based available seat count-
ing algorithms. The new algorithms employ the spatial-domain
Laplacian-of-Gaussian-based wavelet, and the frequency-domain
Non-Linear Difference of Gaussians-based wavelet bandpass
video scene filter to extract illumination invariant scene features
and to combine them efficiently into the background reference
frame. Manual segmentation of the scene into rectangles and
tiles to detect seated objects is no longer needed as we now
apply a boundary box tracker on the segmented moving objects’
blobs. We test all the algorithms with different video sequences
in passengers’ train coaches, and compare the previous approach
with the two new automatic wavelet-based available seat counting
algorithms, and an additional spatial-domain automatic non-
wavelet based Simple Mixture of Gaussian Models.
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I. INTRODUCTION

Over the past decade, the number of installed video surveil-
lance cameras has grown exponentially because of the reduced
cost and the fact that security has gained importance over
privacy in some scenarios. This has led to the development
of different video analytics systems to detect different sce-
narios’ events [1], [2], [3]. In public transport as well, video
surveillance cameras are being installed, and video analytics
are becoming helpful. However, the different conditions in
vehicles turn the video analytics’ task difficult. The primary
goal is to provide additional security, but as the cameras are
already installed, they can also be used for other purposes such
as seat counting.

While a lot of research has already been conducted on the
topic of video analytics, the number of publications for sce-
narios inside moving vehicles is quite limited. In [4], Milcent
et al. present a system to detect baggage in transit vehicles.
They preprocess the video stream to correct the lighting. A
light location mask, indicating reflecting metallic posts inside
the vehicle, is used to gather the different parts of one object.
To increase the speed of the segmentation algorithm, it is only
applied on a region indicated by a probability location mask.
Several projects, such as PRISMATICA (Pro-active Integrated

Systems for Security Management by Technological, Institu-
tional and Communication Assistance, [5]) and BOSS (On-
Board wireless Secured video Surveillance, [6]) mention the
transmission of video feeds upon the triggering of an alarm,
but do not describe how the alarm is exactly triggered. In [7],
Vu et al. present an event recognition system based on face
detection and tracking combined with audio analysis. Three
dimensional (3-D) context such as zones of interest and static
objects are recorded in a knowledge base and 3-D positions
are calculated for mobile objects using calibration matrices.
Strong changes in lighting conditions occasionally prevent the
system to detect people correctly. Yayahiaoui et al. [8] and Liu
et al. [9] report high accuracies in passenger counting using
a dedicated setup. Since the cameras used for this setup can
not be used for other purposes, this solution is too expensive
to be used in some real life scenarios. Also, it is impossible
to retrieve the location of the passengers.

In a previous paper [10], we proposed a system to tackle
the problem of seat counting. The main disadvantages are that
manual labor is needed for each camera view and a training
phase is necessary. In this paper, we propose two automatic
wavelet-based available seat counting algorithms that extract
and combine illumination invariant scene features efficiently
into their composed background reference frame.

The remainder of this paper is organized as follows. In
Section II, we discuss our previous work of a non-automatic
available seat counting algorithm. In Section III, we describe
the two wavelet based available seat counting algorithms. An
evaluation of the previously described non-automatic algo-
rithm, the two algorithms described in this paper and a Simple
Mixture of Gaussian Models (SMM) [11] based algorithm is
given in Section IV. Finally, conclusions and future work are
given in Section V.

II. NON-AUTOMATIC AVAILABLE SEAT COUNTING

In [10], we presented an approach to tackle the available
seat counting problem. This approach consists of two stages:
object detection and event detection.

The object detection consists of three consecutive steps:
first, Laplacian edge detection is applied to discover the



(a) Camera 1 (b) Camera 2

Fig. 1. Sample image from the test sequences

contours of moving objects. Secondly, a median based back-
ground subtraction method is used to retrieve blobs of potential
foreground objects. A last step consists of merging the results
of both techniques to obtain the blobs of the actual foreground
objects.

In the event detection stage, sit down and leave actions
are detected to obtain the number of available seats in a
vehicle. For this purpose, rectangular regions are defined
manually at the positions of the seats. This rectangles are
further subdivided in manually defined tiles. A tile is triggered
when at least half of its pixels are detected as foreground
pixels. When half of the tiles of a rectangle are triggered,
the rectangle is triggered and sit action detection is started.
The order in which the tiles were triggered is compared with
previous presence of foreground pixels in either the aisle or
an adjacent seat region. Sit down activity is registered when
aisle or adjacent seat foreground pixels are detected triggering
the seat tiles. For leave seat action detection, an opposite
process is executed. Another drawback of this algorithm is
that Camera 1 (CAM1) (see Fig. 1) can process only half
of the passengers’ coach and Camera 2 (CAM2) can process
the other half of the passengers’ coach. This is due to the
limitations of the manually defined rectangles and tiles with
respect to the perspective ratio of the passengers’ coach.

III. WAVELET-BASED AUTOMATIC AVAILABLE SEAT
COUNTING

A. Laplacian of Gaussian

In our previously described algorithm, we combined edge
detection with a background subtraction method. Now, since
we want more robustness against illumination changes, and
the previously applied background subtraction method is too
computationally expensive and needs a training phase, here
we only apply edge detection.

From (1), on each frame we first apply a Gaussian filter
G(x, y) in the spatial domain to cope with the noise in the
image. The variance σ of the filter is chosen to be the same
in x- and y- direction and dependent on the kernel size. Then
in (2), we apply a Laplacian filter L(x, y), again in the spatial
domain, to detect the edges. This results in the Laplacian-of-
Gaussian (LoG) operation LoG(x, y), which is shown in (3).
It can be shown that the LoG operation acts as a bandpass
filter. By selecting the right kernel dimensions, which for our
test video sequences was found to be a 7x7 size kernel, the

(a) Edge (b) Gaussian smoothed
edge

(c) Laplacian of Gaus-
sian edge detection

Fig. 2. Laplacian of Gaussian operator applied to an edge; the zero-plane is
also plotted

background noise can be filtered out almost completely, while
maintaining the edges.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

L(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
(2)

LoG(x, y) =
x2 + y2 − 2σ2

2πσ6
e−

x2+y2

2σ2 (3)

When the LoG operation is applied to the image edges,
it produces positive values at the one side of the edge and
negative values at the other side (see Fig. 2). Hence we
check the result of the LoG operation for zero-crossings in
the horizontal, vertical and both diagonal directions to obtain
the edges. The value 0 is returned if the adjacent edge values
have the same sign; the absolute of the difference of the edge
values is returned when they have an opposite sign. For each
pixel, the maximum edge value over all four directions is given
as the final result. The results are for each frame subtracted
from the results from the previous frame to obtain the moving
edges in the current frame.

B. Non-Linear Difference of Gaussians

By subtracting two Gaussian concentric kernels with dif-
ferent standard deviation values for a limited time duration,
a new kernel is formed [12]. This kernel has an average
value of zero and is useful for wavelet analysis applications.
The resulted difference of Gaussians (DoG) filter can detect
edges independent of orientation and produce, when applied,
an edged enhanced image [12]. This operation is given by
(4), where g1(x, y, σ1) and g2(x, y, σ2) are the two Gaussian
kernels with standard deviations σ1 and σ2, Φ(x, y) is the
input image (in spatial domain), and ΦDoG(x, y) is the linearly
(linear difference) convolution image with the two Gaussian
kernels.

ΦDoG(x, y) = (Φ(x, y)⊗g1(x, y, σ1))−(Φ(x, y)⊗g2(x, y, σ2))
(4)

It can be found that the DoG filter forms a type of band-pass
filter with lower and upper cutoff frequencies set by the two
Gaussian kernels. By tuning the standard deviation parameters
σ1 and σ2, the DoG filter is able to select the discriminative
passband mid-frequency features for scene objects and to stop



the low-frequency illumination changes effects and any high-
frequency noise in the input image scene [13]. It is proven
that the DoG filter approximates the Laplacian ∇2 operator
(or the two-dimensional second directional derivative of the
Gaussian kernels ∇2 that is used to create a narrow band-
pass differential operator [13]) best when the ratio of the two
standard deviations σ1/σ2 is equal to 1.6.

The following observations can be made on the DoG filter
operation: (a) the DoG ∇2 operator creates a non-uniform
distribution of energy around the image it is applied on
[14]; (b) the partially closed areas of the image have higher
energy levels relative to other areas. Thus, this unequal energy
distribution causes the image being highly sensitive to rotation
and scale changes of edges. In [14], the authors have shown
that by applying a non-linear function on top of the DoG
∇2 operator, the produced non-linear DoG (NL-DoG) filter
allows a more uniform distribution of energy around the closed
regions of the image. In practice, this causes more fine details
of the image around the edges to be enhanced. The non-linear
function ℵ is applied in the spatial domain of the image [14].
When ℵ is applied on top of the DoG∇2 operator, the resulting
image ΦNL−DoG(x, y) is given by (5).

ΦNL−DoG(x, y) = ℵ · ΦDoG(x, y) (5)

For the results shown in this paper, we have applied the
NL-DoG filter in the frequency domain. Hence, (4) becomes
(6), where the Fast Fourier Transform operation is shown as
FFT and ΦDoG

FFT (x, y) is the DoG filter transformed image
ΦDoG(x, y) in the frequency domain. Then, (5) can be re-
written as (7), where the inverse-fast Fourier transform is
shown as IFFT . Thus, ℵ is applied in the spatial domain
but the rest of the NL-DoG filter is applied in the frequency
domain. ℵ is chosen to be a sigmoidal-type function.

ΦDoG
FFT (x, y) = FFT (Φ(x, y))·FFT (g1(x, y, σ1)−g2(x, y, σ2))

(6)

ΦNL−DoG(x, y) = ℵ · IFFT (ΦDoG
FFT (x, y)) (7)

Fig. 3 shows the NL-DoG filter implementation for scene
segmentation of foreground objects in the automatic available
seat counting algorithm we have developed. We used the time
intervals with memory (TIME, [15]) algorithm to compose
the reference background frame. Thus, a background frame is
selected at regular time intervals for the whole duration of each
test video sequence recorded from CAM1 or CAM2 installed
in the passengers’ train coaches. In Fig. 3, assume the test
video sequence we used has a total duration of 35 seconds with
13 frames per second (fps) (after clearing out the duplicate
frame patterns produced during the video data acquisition and
storing), then we select one frame per fixed time interval each
second i.e. in total 35 frames were selected for the composition
of the reference background frame. Then, NL-DoG filter is
applied on each selected frame in the frequency domain, and
all the NL-DoG transformed frames are averaged to synthesize

Fig. 3. Foreground scene objects extraction in the test video sequences
recorded from Camera 1 and 2, installed in the passengers’ train coaches,
using the TIME algorithm and the NL-DoG wavelet-based filter

the background reference frame. We apply the NL-DoG filter
in the frequency domain on the current test video sequence
frame and subtract the composed background reference frame
to extract the foreground scene objects [16].

C. Bounding Box Tracking

To achieve automatic available seat counting in our devel-
oped algorithms, we implemented a simple Bounding Box
(BB) tracking method in combination with the LoG (spatial
domain), NL-DoG (frequency domain), and the simple mixture
of gaussians (SMM, [11]) (spatial domain) operations.

In a first step, BBs are applied on the detected objects.
A threshold value is used for the LoG/NL-DoG/SMM trans-
formed images (or video frames) of the algorithms, followed
by a morphological closure and opening. The produced ob-
jects’ blobs are compared with those in the previous frame.
If there is a similar object blob in the previous frame, BB
is matched and passed on to the next step. In a second step,
BBs are eliminated based on multiple criteria concerning their
size relative to their position and the perspective ratio in the
passengers’ coach. Thus, detected objects further away from
the camera are assumed to be smaller than objects closer to
the camera. The remaining BBs are used in the final step.
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Fig. 4. Scene map and bounding box results

Here, we implemented a novel scene map [17] independent of
the different passengers’ train coaches. In effect, we apply
a scene map on the passengers’ coach, where we assume
the coach can be divided to FAR-LEFT, FAR-RIGHT, MID-
LEFT, MID-RIGHT, NEAR-LEFT, NEAR-RIGHT (see Fig.
4(a)), or simplified to LEFT and RIGHT zones. No explicit
pixel counting is needed to separate into different zones.
Rather, the created scene map is independent on any settings
of the passengers’ train coaches. Therefore, in the final step,
detected objects (see Fig. 4(b) and Fig. 4(c)) are classified to
be occupying a seat when they are moving into the LEFT or
RIGHT zones of the map.

IV. EVALUATION

A. Test Setup

We evaluated the different algorithms on sequences that
were recorded in a train of the Belgian national railway
company (NMBS-Group). Two cameras, CAM1 and CAM2,
installed in the passengers’ train coach were used to record
these video sequences; sample video frames are shown in Fig.
1(a) for CAM1 and Fig. 1(a) for CAM2. We preprocessed the
recorded video sequences to clear out any duplicate patterns
of frames created during the acquisition and storing stage of
the sequences.

B. Evaluation Metrics

For each frame in the sequences, the actual number of
persons in the seats of the train is compared with the number
given by the different approaches. The minimum of these
two numbers are counted as true positives (TP); if the actual
number of persons is greater than the detected number, this
excess is counted as false negatives (FN); if the actual number
of persons is less, this shortage is counted as false positives
(FP). The true negatives (TN) consist of the number of frames
that are correctly detected as frames with no persons present.

Based on these metrics, the precision, recall, true negative
rate, and accuracy are calculated as follows:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

true negative rate =
TN

TN + FP
(10)

accuracy =
TP + TN

TP + TN + FP + FN
(11)

C. Preliminary Results

Table I summarizes the recorded performance metrics for
the conducted initial results of the different algorithms, i.e.
the non-automatic available seat counting algorithm, and the
new automatic wavelet-based LoG/NL-DoG and non-wavelet
based SMM available seat counting algorithms. Notice we
have recorded the performance metrics for both CAM1 and
CAM2. For our tests, we used two video sequences, one of
35 seconds and one of approximately 4 minutes. For the non-
automatic available seat counting algorithm, we only show one
value, instead of two (one for each camera). This is due to the
limitations of this algorithm in which each camera can only
process half of the passengers’ coach. So, the value shown is
the combined result of the two cameras.

From the recorded precision and accuracy performance
metrics values, it is shown that the automatic wavelet-based
LoG/NL-DoG and non-wavelet based SMM algorithms per-
form superior to the non-automatic available seat counting
algorithm. In effect, the automatic available seat counting
algorithms are able to produce a higher number of TPs than
the non-automatic available seat counting algorithm. From the
recorded recall values, it can be found that the non-automatic
available seat counting algorithm exhibits a higher value than
the automatic (wavelet- or non-wavelet based) available seat
counting algorithms. In effect, focusing on the long test video
sequences, and if we take the average value of CAM1 and
CAM2, then we get approximately 0.81 for LoG, 0.78 for NL-
DoG and 0.62 for SMM. This means that the non-automatic
available seat counting algorithm has less time during which
a seated person is not detected than the automatic available
seat counting algorithms. On the other hand, if we take a
look at the true negative rate, we obtain an average value of
approximately 0.25 for LoG, 0.17 for NL-DoG and 0.71 for
SMM, but 0.03 for the non-automatic algorithm. This means
that the non-automatic available seat counting algorithm has
more time during which a seated person is falsely detected.

V. CONCLUSION AND FUTURE WORK

This paper described two new automatic wavelet-based
available seat counting algorithms. One was based on spatial
domain LoG, and the other on the frequency domain NL-DoG.
They both are able to select illumination invariant features in
the synthesis of their background reference frame. A novel
scene map method together with a BB tracking method is
used to detect and classify the segmented objects as seated.
From the recorded initial results, it is shown that the automatic
available seat counting algorithms in spatial- and frequency-
domains outperform the non-automatic available seat counting
algorithm.

In future, we are going to experiment with the creation of
a robust tracking mask to recognize multiple objects and to
separate them into different categories [18], [19]. Also, a major
challenge to solve remains dealing with objects’ occlusions in



TABLE I
PERFORMANCE EVALUATION OF DIFFERENT APPROACHES FOR AVAILABLE

SEAT COUNTING

Algorithm
Precision Recall True negative rate Accuracy

Previous approach
Short 1 0.8325 1 0.8839
Long 0.6366 0.9940 0.0274 0.6379

Laplacian of Gaussian
Short cam 1 0.9918 0.9032 0.9816 0.9258
Short cam 2 1 0.8846 1 0.9162
Long cam 1 0.9260 0.8468 0.1653 0.7957
Long cam 2 0.9706 0.7819 0.3429 0.7667

non-linear difference of Gaussians
Short cam 1 1 0.5146 1 0.603
Short cam 2 1 0.5529 1 0.9679
Long cam 1 0.9533 0.6641 0.2446 0.6467
Long cam 2 0.8570 0.8867 0.0866 0.7752

Simple mixture of models
Short cam 1 1 0.5326 1 0.6204
Short cam 2 1 0.5142 1 0.6015
Long cam 1 0.9944 0.6002 0.7373 0.6020
Long cam 2 0.9926 0.6301 0.6788 0.6311

the scene. We will create more tests video datasets to further
compare the performance of LoG-based, NL-DoG based,
and SMM-based automatic available seat counting algorithms
combined with the tracking mask.
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